
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Sampling-Based Verification of CTMCs
with Uncertain Rates ?

Thom S. Badings1 , Nils Jansen1 , Sebastian Junges1 ,
Marielle Stoelinga1,2 , and Matthias Volk2

1 Radboud University, Nijmegen, the Netherlands
thom.badings@ru.nl

2 University of Twente, Enschede, the Netherlands

Abstract. We employ uncertain parametric CTMCs with parametric
transition rates and a prior on the parameter values. The prior encodes
uncertainty about the actual transition rates, while the parameters allow
dependencies between transition rates. Sampling the parameter values
from the prior distribution then yields a standard CTMC, for which we
may compute relevant reachability probabilities. We provide a principled
solution, based on a technique called scenario-optimization, to the follow-
ing problem: From a finite set of parameter samples and a user-specified
confidence level, compute prediction regions on the reachability probabil-
ities. The prediction regions should (with high probability) contain the
reachability probabilities of a CTMC induced by any additional sample.
To boost the scalability of the approach, we employ standard abstraction
techniques and adapt our methodology to support approximate reachabil-
ity probabilities. Experiments with various well-known benchmarks show
the applicability of the approach.

1 Introduction

Continuous-time Markov chains (CTMCs) are widely used to model complex
probabilistic systems in reliability engineering [51], network processes [36,38],
systems biology [10,22] and epidemic modeling [2]. A key verification task is to
compute aspects of system behavior from these models, expressed as, e.g., con-
tinuous stochastic logic (CSL) formulae [4,6]. Typically, we compute reachability
probabilities for a set of horizons, such as: what is the probability that a target state
is reached before time t1, . . . , tn? Standard algorithms [6] implemented in mature
model checking tools such as Storm [37] or Prism [42] provide efficient means to
compute these reachability probabilities. However, these methods typically require
that transition rates and probabilities are precisely known. This assumption is
often unrealistic [34] and led to some related work, which we discuss in Sect. 7.

Illustrative example. An epidemic can abstractly be modeled as a finite-state
CTMC, e.g., the SIR (susceptible-infected-recovered) model [3], which is shown

? This work has been partially funded by NWO under the grant PrimaVera, number
NWA.1160.18.238, and by EU Horizon 2020 project MISSION, number 101008233.

ar
X

iv
:2

20
5.

08
30

0v
3

 [
cs

.L
O

]
 2

1
Ju

n
20

22

https://doi.org/10.5281/zenodo.6523863
http://orcid.org/0000-0002-5235-1967
http://orcid.org/0000-0003-1318-8973
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0001-6793-8165
http://orcid.org/0000-0002-3810-4185
https://primavera-project.com

2 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

SR SI II RI RR
λr λi 2λr λr

(a) pCTMC M with parameters λi, λr.

0

1

λi λr

(b) Distribution P over values for (λi, λr).

Fig. 1: An upCTMC (M,P) for the SIR (pop=2) model.

100 150 200
0

0.2

0.4

0.6

0.8

1

Time (weeks)

P
ro

b
a
b
il
it

y

(a) Curve for a single
CTMC with precise
transition rates.

100 150 200
Time (weeks)

(b) Point abstrac-
tion of a curve for
a single CTMC.

t1 t2
Time (weeks)

(c) Curves for five
CTMCs with differ-
ent rates.

t1 t2
Time (weeks)

High prob.

Low prob.

(d) Two prediction
regions with different
probabilities.

Fig. 2: The probability of extinction in the SIR (140) model for horizons [100, t].

in Fig. 1a for a population of two. Such a CTMC assumes a fixed set of transition
rates, in this case an infection rate λi, and a recovery rate λr. The outcome of
analyzing this CTMC for fixed values of λi and λr may yield a probability curve
like in Fig. 2a3, where we plot the probability (y-axis) of reaching a target state
that corresponds to the epidemic becoming extinct against varying time horizons
(x-axis). In fact, the plot is obtained via a smooth interpolation of the results at
finitely many horizons, cf. 2b. To acknowledge that λi, λr are in fact unknown, we
may analyze the model for different values of λi, λr, resulting in a set of curves
as in Fig. 2c. These individual curves, however, provide no guarantees about the
shape of the curve obtained from another infection and recovery rate. Instead,
we assume a probability distribution over the transition rates and aim to compute
prediction regions as those in shown Fig. 2d, in such a way that with a certain
(high) probability, any rates λi and λr yield a curve within this region.

Overall goal. From the illustrative example, we state the following goal. Each fixed
set of transition rates induces a probability curve, i.e., a mapping from horizons
to the corresponding reachability probabilities. We aim to construct prediction
regions around a set of probability curves, such that with high probability and high
confidence, sampling a set of transition rates induces a probability curve within
this region. Our key contribution is an efficient probably approximately correct, or
PAC-style method that computes these prediction regions. The remainder of the
introduction explores the technical steps toward this goal.

3 For visual clarity, we plot the reachability probability between time 100 and t1, . . . , tn.

Sampling-Based Verification of CTMCs with Uncertain Rates 3

Uncertain CTMCs. The setting above is formally captured by parametric CTMCs
(pCTMCs). Transition rates of pCTMCs are not given precisely but as (polyno-
mials over) parameters [14,34], such as those shown in Fig. 1a. We assume a prior
on each parameter valuation, i.e., assignment of values to parameters, similar to
settings in [10,44] and in contrast to, e.g., [22,34]. These priors may result from
asking different experts which value they would assume for, e.g., the infection
rate. The prior may also be the result of Bayesian reasoning [56]. Formally, we
capture the uncertainty in the rates by an arbitrary and potentially unknown
probability distribution over the parameter space, see Fig. 1b. We call this model
an uncertain pCTMC (upCTMC). The distribution allows drawing independent
and identically distributed (i.i.d.) samples that yield (parameter-free) CTMCs.

Problem statement. We consider prediction regions on probability curves in the
form of a pair of two curves that ‘sandwich’ the probability curves, as depicted
in Fig. 2d. Intuitively, we then aim to find a prediction region R that is sufficiently
large, such that sampling parameter valuations yields a probability curve in R
with high probability p. We aim to compute a lower bound on this containment
probability p. Naturally, we also aim to compute a meaningful, i.e. small (tight),
prediction region R. As such, we aim to solve the following problem:

Problem Statement. Given a upCTMC with a target state, compute

1. a (tight) prediction region R on the probability curves, and
2. a (tight) lower bound on the containment probability that a sampled

parameter valuation induces a probability curve that will lie in R.

We solve this problem with a user-specified confidence level β.

The problem solved. In this paper, we present a method that samples probability
curves as in Fig. 2c, but now for, say 100 curves. From these curves, we compute
prediction regions (e.g., both tubes in Fig. 2d) and compute a lower bound (one
for both tubes) on the containment probability that the curve associated with
any sampled parameter value will lie in the specific prediction region (tube).
Specifically, for a confidence level of 99% and considering 100 curves, we conclude
that this lower bound is 79.4% for the red region and 7.5% for the blue region. For
a higher confidence level of 99.9%, the lower bounds are slightly more conservative.

A change in perspective. Toward the algorithm, we make a change in perspective.
For two horizons t1 and t2, reachability probabilities for fixed CTMCs are two-
dimensional points in [0, 1]2 that we call solution vectors, as shown in Fig. 3a.
Here, these solution vectors represent pairs of the probabilities that the disease
becomes extinct before time t1 and before t2. The prediction regions as in Fig. 2d
are shown as the shaded boxes in Fig. 3a.

Solving the problem algorithmically. We solve the problem using a sampling-based
approach. Starting with a set of solution vectors, we use techniques from scenario
optimization, a data-driven methodology for solving stochastic optimization
problems [17,20]. As such, we construct the prediction region from the solution
to an optimization problem. Our method can balance the size of the prediction
region with the containment probability, as illustrated by the two boxes in Fig. 3a.

4 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Probability(t1)

P
ro

b
a
b
il
it

y
(t

2
)

High prob.

Low prob.

(a) Reachability at time points t1 and t2.

250 300 350 400
0

0.2
0.4
0.6
0.8

1

Measure 1

M
ea

su
re

2

(b) Pareto front for two measures.

Fig. 3: Prediction regions on the solutions vectors for two different upCTMCs.

Extensions. Our approach offers more than prediction regions on probability
curves from precise samples. The change in perspective mentioned above allows
for solution vectors that represent multiple objectives, such as the reachability
with respect to different goal states, expected rewards or even the probability
mass of paths satisfying more complex temporal properties. In our experiments,
we show that this multi-objective approach —also on probability curves— yields
much tighter bounds on the containment probability than an approach that
analyzes each objective independently. We can also produce prediction regions as
other shapes than boxes, as, for example, shown in Fig. 3b. To accelerate our
approach, we significantly extend the methodology for dealing with imprecise
verification results, given as an interval on each entry of the solution vector.

Contributions. Our key contribution is the approach that provides prediction
regions and lower bounds on probability curves for upCTMCs. The approach
requires only about 100 samples and scales to upCTMCs with tens of parameters.
Furthermore: (1) We extend our approach such that we can also handle the case
where only imprecise intervals on the verification results are available. (2) We
develop a tailored batch verification method in the model checker Storm [37] to
accelerate the required batches of verification tasks. We accompany our contribu-
tions by a thorough empirical evaluation and remark that our batch verification
method can be used beyond scenario optimization. Our scenario optimization
results are independent of the model checking and are, thus, applicable to any
model where solution vectors are obtained in the same way as for upCTMCs.

Data availability. All source code, benchmarks, and logfiles used to produce the
data are archived: https://doi.org/10.5281/zenodo.6523863.

2 Problem Statement

In this section, we introduce pCTMCs and upCTMCs, and we define the formal
problem statement. We use probability distributions over finite and infinite sets;
see [8] for details. The set of all distributions over a set X is denoted by Dist(X).
The set of polynomials over parameters V , with rational coefficients, is denoted
by Q[V]. An instantiation u : V → Q maps parameters to concrete values. We
often fix a parameter ordering and denote instantiations as vectors, u ∈ Q|V |.

https://doi.org/10.5281/zenodo.6523863

Sampling-Based Verification of CTMCs with Uncertain Rates 5

Definition 1 (pCTMC). A pCTMC is a tuple M = (S, sI , V,R), where S is
a finite set of states, sI ∈ Dist(S) is the initial distribution, V are the (ordered)
parameters, and R : S × S → Q[V] is a parametric transition rate function. If
R(s, s) ∈ Q≥0 for all s, s′ ∈ S, then M is a (parameter-free) CTMC.

For any pair of states s, s′ ∈ S with a non-zero rate R(s, s′) > 0, the probability
of triggering a transition from s to s′ within t time units is 1− e−R(s,s′)·t [41].

Applying an instantiation u to a pCTMC M yields an instantiated CTMC
M[u] = (S, sI , V,R[u]) where R[u](s, s′) = R(s, s′)[u] for all s, s′ ∈ S. In the
remainder, we only consider instantiations u for a pCTMC M which are well-
defined. The set of such instantiations is the parameter space VM.

A central measure on CTMCs is the (time-bounded) reachability Pr(♦≤τE),
which describes the probability that one of the error states E4 is reached within
the horizon τ ∈ Q. Other measures include the expected time to reach a particular
state, or the average time spent in particular states. We refer to [41] for details.

Given a concrete (instantiated) CTMC M[u], the solution for measure ϕ
is denoted by solϕM[u] ∈ R; the solution vector solΦM[u] ∈ Rm generalizes this

concept to an (ordered) set of m measures Φ = ϕ1, . . . , ϕm. We abuse notation
and introduce the solution function to express solution vectors on a pCTMC:

Definition 2 (Solution function). A solution function solΦM : VM → R|Φ| is
a mapping from a parameter instantiation u ∈ VM to the solution vector solΦM[u].

We often omit the scripts in solΦM(u) and write sol(u) instead. We also refer to
sol(u) as the solution vector of u. For n parameter samples Un = {u1, . . . , un}
with ui ∈ VM, we denote the solution vectors by sol(Un) ∈ Rm×n.

Using solution vectors, we can define the probability curves shown in Fig. 2c.

Definition 3 (Probability curve). The probability curve for reachability
probability φτ = Pr(♦≤τE) and CTMC M[u] is given by probC : τ 7→ solϕτM[u].

We can approximate the function probC for a concrete CTMC by computing
probC(t1), . . . , probC(tm) for a finite set of time horizons. As such, we compute
the solution vector w.r.t. m different reachability measures Φ = {ϕt1 , . . . , ϕtm}.
By exploiting the monotonicity5 of the reachability over time, we obtain an upper
and lower bound on probC(τ) as two step functions, see Fig. 2d. We can smoothen
the approximation, by taking an upper and lower bound on these step functions.

We study pCTMCs where the parameters follow a probability distribution.
This probability distribution can be highly complex or even unknown; we merely
assume that we can sample from this distribution.

Definition 4 (upCTMC). A upCTMC is a tuple (M,P) with M a pCTMC
and P a probability distribution over the parameter space VM of M.

A upCTMC defines a probability space (VM,P) over the parameter values, whose
domain is defined by the parameter space VM. In the remainder, we denote a
sample from VM drawn according to P by u ∈ VM.

4 Formally, states are labeled and E describes the label, see [7].
5 In Def. 3, only the upper limit on the timebound is varied, so measures are monotonic.

6 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

To quantify the performance of a upCTMC, we may construct a prediction
region on the solution vector space, such as those shown in Fig. 3a. In this paper,
we consider only prediction regions which are compact subsets R ⊆ R|Φ|. We
define the so-called containment probability of a prediction region, which is the
probability that the solution vector sol(u) for a randomly sampled parameter
u ∈ VM is contained in R, as follows:

Definition 5 (Containment probability). For a prediction region R, the
containment probability containV(R) is the probability that the solution vector
sol(u) for any parameter sample u ∈ VM is contained in R:

containV(R) = Pr{u ∈ VM : sol(u) ∈ R}. (1)

Recall that we solve the problem in Sect. 1 with a user-specified confidence level,
denoted by β ∈ (0, 1). Formally, we solve the following problem:

Formal Problem. Given a upCTMC (M,P), a set Φ of measures, and
a confidence level β ∈ (0, 1), compute a (tight) prediction region R and a
(tight) lower bound µ ∈ (0, 1) on the containment probability, such that
contain(R) ≥ µ holds with a confidence level of at least β.

The problem in Sect. 1 is a special case of the formal problem, with Φ the reach-
ability probability over a set of horizons. In that case, we can overapproximate a
prediction region as a rectangle, yielding an interval [

¯
c, c̄] for every horizon t that

defines where the two step functions (see below Def. 3) change. We smoothen these
step functions (similar to probability curves) to obtain the following definition:

Definition 6 (Prediction region for a probability curve). A prediction
region R over a probability curve probC is given by two curves

¯
c, c̄ : Q≥0 → R as

the area in-between: R = {(t, y) ∈ Q× R |
¯
c(t) ≤ y ≤ c̄(t)}.

We solve the problem by sampling a finite set Un of parameter values of the
upCTMC and computing the corresponding solution vectors sol(Un). In Sect. 3,
we solve the problem assuming that we can compute solution vectors exactly. In
Sect. 4, we consider a less restricted setting in which every solution is imprecise,
i.e. only known to lie in a certain interval.

3 Precise Sampling-Based Prediction Regions

In this section, we use scenario optimization [15,17] to compute a high-confidence
lower bound on the containment probability. First, in Sect. 3.1, we describe
how to compute a prediction region using the solution vectors sol(Un) for the
parameter samples Un. In Sect. 3.2, we clarify how to compute a lower bound on
the containment probability with respect to this prediction region. In Sect. 3.3,
we construct an algorithm based on those results that solves the formal problem.

Sampling-Based Verification of CTMCs with Uncertain Rates 7

3.1 Constructing prediction regions

We assume that we are given a set of solution vectors sol(Un) obtained from n
parameter samples. We construct a prediction region R based on these vectors
such that we can annotate these regions with a lower bound on the containment
probability, as in the problem statement. For conciseness, we restrict ourselves
to the setting where R is a hyperrectangle in Rm, with m = |Φ| the number of
measures, cf. Remark 1 below. In the following, we represent R using two vectors
(points)

¯
x, x̄ ∈ Rm such that, using pointwise inequalities, R = {x |

¯
x ≤ x ≤ x̄}.

For an example of such a rectangular prediction region, see Fig. 3a.
As also shown in Fig. 3a, we do not require R to contain all solutions in

sol(Un). Instead, we have two orthogonal goals: we aim to minimize the size of
R, while also minimizing the (Manhattan) distance of samples to R, measured
in their 1-norm. Solutions contained in R are assumed to have a distance of
zero, while solutions not contained in R are called relaxed. These goals define
a multi-objective problem, which we solve by weighting the two objectives using
a fixed parameter ρ > 0, called the cost of relaxation, that is used to scale the
distance to R. Then, ρ→∞ enforces sol(Un) ⊆ R, as in the outer box in Fig. 3a,
while for ρ → 0, R is reduced to a point. Thus, the cost of relaxation ρ is a
tuning parameter that determines the size of the prediction region R and hence
the fraction of the solution vectors that is contained in R (see [18,20] for details).

We capture the problem described above in the following convex optimization
problem LρU . We define the decision variables

¯
x, x̄ ∈ Rm to represent the prediction

region. In addition, we define a decision variable ξi ∈ Rm≥0 for every sample
i = 1, . . . , n that acts as a slack variable representing the distance to R.

LρU : minimize ‖x̄−
¯
x‖1 + ρ

n∑
i=1

‖ξi‖1 (2a)

subject to
¯
x− ξi ≤ sol(ui) ≤ x̄+ ξi ∀i = 1, . . . , n. (2b)

The objective function in Eq. (2a) minimizes the size of R —by minimizing the
sum of the width of the prediction region in all dimensions— plus ρ times the
distances of the samples to R. We denote the optimal solution to problem LρU for
a given ρ by R∗ρ, ξ

∗
ρ , where R∗ρ = [

¯
x∗ρ, x̄

∗
ρ] for the rectangular case.

Assumption 1. The optimal solution R∗ρ, ξ
∗
ρ to LρU exists and is unique.

Note that Def. 2 ensures finite-valued solution vectors, thus guaranteeing the
existence of a solution to Eq. (2). If the solution is not unique, we apply a suitable
tie-break rule that selects one solution of the optimal set (e.g., the solution with
a minimum Euclidean norm, see [15]). The following example shows that values
of ρ exist for which such a tie-break rule is necessary to obtain a unique solution.

Example 1. Fig. 4 shows a set of solution vectors in one dimension, labeled
A–F . Consider prediction region R1 = [A,F]. The corresponding objective value
Eq. (2a) is ‖x̄ −

¯
x‖ + ρ ·

∑
ξi = ‖x̄ −

¯
x‖ = δ1 + · · · + δ5, as all ξi = 0. For

prediction region R2 = [B,E], the objective value is δ2 + δ3 + δ4 + ρ · δ1 + ρ · δ5.

8 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

M
ea

su
re

δ1

δ2

δ3

δ4

δ5

[
¯
x∗ρ, x̄

∗
ρ]

ρ > 1 [
¯
x∗ρ, x̄

∗
ρ]

1
2
< ρ < 1 [

¯
x∗ρ, x̄

∗
ρ]

1
4
< ρ < 1

2

0
A

B

C

D

E

F

Fig. 4: The prediction region changes
with the cost of relaxation ρ.

1.76 1.78 1.8 1.82

1.2

1.3

1.4

Expected #tokens cell 1

E
x
p
.

#
to

k
en

s
ce

ll
2 ρ = 2.00 ρ = 0.40 ρ = 0.15

Fig. 5: Prediction regions as boxes, for
different costs of relaxations ρ.

Thus, for ρ > 1, solving LρU yields R1 whereas for ρ < 1, relaxing solutions A
and F is cheaper than not doing so, so R2 is optimal. When ρ = 1, however,
relaxing solutions A and F yields the same cost as not relaxing these samples, so
a tie-break rule is needed (see above). For ρ < 1

2 , relaxing samples A, B, E, and F
is cost-optimal, resulting in the prediction region containing exactly {C,D}.

Similarly, we can consider cases with more samples and multiple measures, as
shown in Fig. 5, which we discuss in more detail in App. A. The three prediction
regions in Fig. 5 are obtained for different costs of relaxation ρ. For ρ = 2, the
region contains all vectors, while for a lower ρ, more vectors are left outside.

Remark 1. While problem LρU in Eq. (2) yields a rectangular prediction region, we
can also produce other shapes. We may, e.g., construct a Pareto front as in Fig. 3b,
by adding additional affine constraints [11]. In fact, our only requirement is that
the objective function is convex, and the constraints are convex in the decision
variables (the dependence of the constraints on u may be arbitrary) [20].

3.2 Bounding the containment probability

The previous section shows how we compute a prediction region based on convex
optimization. We now characterize a valid high-confidence lower bound on the
containment probability w.r.t. the prediction region given by the optimal solution
to this optimization problem. Toward that result, we introduce the so-called
complexity of a solution to problem LρU in Eq. (2), a concept used in [20] that is
related to the compressibility of the solution vectors sol(Un):

Definition 7 (Complexity). For LρU with optimal solution R∗ρ, ξ
∗
ρ , consider a

set W ⊆ Un and the associated problem LρW with optimal solution R̃ρ, ξ̃ρ. The set
W is critical, if

R̃ρ = R∗ρ and {ui | ξ∗ρ,i > 0} ⊆ W.

The complexity c∗ρ of R∗ρ, ξ
∗
ρ is the cardinality of the smallest critical set. We also

call c∗ρ the complexity of LρU .

Sampling-Based Verification of CTMCs with Uncertain Rates 9

0 5

1
0

1
5

2
0

2
5

0
0.2
0.4
0.6
0.8

1

Complexity (c)

L
ow

er
b

o
u

n
d

(η
)

β = 0.9

β = 0.99

β = 0.999

(a) Number of samples n = 25.

0

2
0

4
0

6
0

8
0

1
0
0

0
0.2
0.4
0.6
0.8

1

Complexity (c)

L
ow

er
b

o
u

n
d

(η
)

β = 0.9

β = 0.99

β = 0.999

(b) Number of samples n = 100.

Fig. 6: Lower bounds η on the containment probability as a function of the
complexity c, obtained from Theorem 1 for different confidence levels β.

If a sample ui has a value ξ∗ρ,i > 0, its solution vector has a positive distance to the
prediction region, R∗ρ. (i.e., [

¯
x∗ρ, x̄

∗
ρ] for the rectangular case). Thus, the complexity

c∗ρ is the number of samples for which sol(ui) /∈ R∗ρ, plus the minimum number
of samples needed on the boundary of the region to keep the solution unchanged.
We describe in Sect. 3.3 how we algorithmically determine the complexity.

Example 2. In Fig. 5, the prediction region for ρ = 2 contains all solution vectors,
so ξ∗2,i = 0 ∀i. Moreover, if we remove all but four solutions (the ones on the
boundary of the region), the optimal solution to problem LρU remains unchanged,
so the complexity is c∗1.12 = 0 + 4. Similarly, the complexity for ρ = 0.4 is
c∗0.4 = 8 + 2 = 10 (8 solutions outside the region, and 2 on the boundary).

Recall that Def. 5 defines the containment probability of a generic prediction
region R, so contain(R∗ρ) is the containment probability w.r.t. the optimal solution
to LρU . We adapt the following theorem from [20], which gives a lower bound
on the containment probability contain(R∗ρ) of an optimal solution to LρU for a
predefined value of ρ. This lower bound is correct with a user-defined confidence
level of β ∈ (0, 1), which we typically choose close to one (e.g., β = 0.99).

Theorem 1. Let Un be a set of n samples, and let c∗ be the complexity of problem
LρU . For any confidence level β ∈ (0, 1) and any upper bound d∗ ≥ c∗, it holds that

Pn
{
contain

(
R∗ρ
)
≥ η(d∗)

}
≥ β, (3)

where R∗ρ is the prediction region for LρU . Moreover, η is a function defined as
η(n) = 0, and otherwise, η(c) is the smallest positive real-valued solution to the
following polynomial equality in the t variable for a complexity of c:(

n

c

)
tn−c − 1− β

2n

n−1∑
i=c

(
i

c

)
ti−c − 1− β

6n

4n∑
i=n+1

(
i

c

)
ti−c = 0. (4)

We provide the proof of Theorem 1 in App. B.1. With a probability of at least
β, Theorem 1 yields a correct lower bound. That is, if we solve LρU for many
more sets of n parameter samples (note that, as the samples are i.i.d., these sets

10 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

(1) Sample
parameters

(2) Model
checker

(3) Scenario
LPs

(4) Complexity
Estimation

(5) Bounding
sat.prob.

1) Distribution P over VM
2) Sample size n

1) pCTMC M
2) Measures Φ

Costs of relaxation
ρ1, ρ2, . . . , ρk Confidence level β

Un sol(Un)
R∗ρk , ξ

∗
ρk ∀ρ

sol(Un) d∗ρ ≥ c∗ρ ∀ρ
Lower bounds
η(d∗ρ) ∀ρ

Prediction regions R∗ρ ∀ρ

Fig. 7: Overview of our approach for solving the problem statement.

are drawn according to the product probability Pn), the inequality in Eq. (3) is
incorrect for at most a 1− β fraction of the cases. We plot the lower bound η(c)
as a function of the complexity c = 0, . . . , n in Fig. 6, for different samples sizes
n and confidence levels β. These figures show that an increased complexity leads
to a lower η, while increasing the sample size leads to a tighter bound.

Example 3. We continue Example 2. Recall that the complexity for the outer
region in Fig. 5 is c∗1.12 = 4. With Theorem 1, we compute that, for a confidence
level of β = 0.9, the containment probability for this prediction region is at least
η = 0.615 (cf. Fig. 6a). For a stronger confidence level of β = 0.999, we obtain a
more conservative lower bound of η = 0.455.

3.3 An algorithm for computing prediction regions

We combine the previous results in our algorithm, which is outlined in Fig. 7. The
goal is to obtain a set of prediction regions as in Fig. 5 and their associated lower
bounds. To strictly solve the problem statement, assume k = 1 in the exposition
below. We first outline the complete procedure before detailing Steps 4 and 5.

As preprocessing steps, given a upCTMC (M,P), we first (1) sample a set
Un of n parameter values. Using M and Φ, a (2) model checking algorithm
then computes the solution vector solΦM(u) for each u ∈ Un, yielding the set of
solutions sol(Un). We then use sol(Un) as basis for (3) the scenario problem LρU in
Eq. (2), which we solve for k predefined values ρ1, . . . , ρk, yielding k prediction
regions R∗ρ1 , . . . R

∗
ρk

. We (4) compute an upper bound d∗ρ on the complexity c∗ρ ∀ρ.
Finally, we (5) use the result in Theorem 1, for a given confidence β, to compute
the lower bound on the containment probability η(d∗ρ) of R∗ρ. Using Def. 6, we
can postprocess this region to a prediction region over the probability curves.

Step (3): Choosing values for ρ. Example 1 shows that relaxation of additional
solution vectors (and thus a change in the prediction region) only occurs at
critical values of ρ = 1

n , for n ∈ N. In practice, we will use ρ = 1
n+0.5 for ±10

values of n ∈ N to obtain gradients of prediction regions as in Sect. 6.

Step (4): Computing complexity. Computing the complexity c∗ρ is a combinatorial
problem in general [30], because we must consider the removal of all combinations
of the solutions on the boundary of the prediction region R∗ρ. In practice, we
compute an upper bound d∗ρ ≥ c∗ρ on the complexity via a greedy algorithm.
Specifically, we iteratively solve LρU in Eq. (2) with one more sample on the
boundary removed. If the optimal solution is unchanged, we conclude that this

Sampling-Based Verification of CTMCs with Uncertain Rates 11

sample does not contribute to the complexity. If the optimal solution is changed,
we put the sample back and proceed by removing a different sample. This greedy
algorithm terminates when we have tried removing all solutions on the boundary.

Step (5): Computing lower bounds. Theorem 1 characterizes a computable function
B(d∗, n, β) that returns zero for d∗ = n (i.e., all samples are critical), and
otherwise uses the polynomial Eq. (4) to obtain η, which we solve with an
approximate root finding method in practice (see [31] for details on how to ensure
that we find the smallest root). For every upper bound on the complexity d∗

and any requested confidence, we obtain the lower bound η = B(d∗, n, β) for the
containment probability w.r.t. the prediction region R∗ρ.

4 Imprecise Sampling-Based Prediction Regions

Thus far, we have solved our problem statement under the assumption that
we compute the solution vectors precisely (up to numerics). For some models,
however, computing precise solutions is expensive. In such a case, we may choose
to compute an approximation, given as an interval on each entry of the solution
function. In this section, we deal with such imprecise solutions.

Setting. Formally, imprecise solutions are described by the bounds sol−(u), sol+(u) ∈
Rm such that sol−(u) ≤ sol(u) ≤ sol+(u) holds with pointwise inequalities. Our
goal is to compute a prediction region R and a (high-confidence) lower bound
µ such that contain(R) ≥ µ, i.e., a lower bound on the probability that any
precise solution sol(u) is contained in R. However, we must now compute R and
contain(R) from the imprecise solutions sol−, sol+. Thus, we aim to provide a
guarantee with respect to the precise solution sol(u), based on imprecise solutions.

Challenge. Intuitively, if we increase the (unknown) prediction region R∗ from
problem LρU (for the unknown precise solutions) while also overapproximating
the complexity of LρU , we obtain sound bounds. We formalize this idea as follows.

Lemma 1. Let R∗ρ be the prediction region and c∗ρ the complexity that result
from solving LρU for the precise (unknown) solutions sol(Un). Given a set R ∈ Rn
and d ∈ N, for any confidence level β ∈ (0, 1), the following implication holds:

R∗ρ ⊆ R and c∗ρ ≤ d =⇒ Pn
{
contain

(
R
)
≥ η(d)

}
≥ β, (5)

where η(n) = 0, and otherwise, η(d) is the smallest positive real-valued solution
to the polynomial equality in Eq. (4).

The proof is in App. B.2. In what follows, we clarify how we compute the
appropriate R and d in Lemma 1. As we will see, in contrast to Sect. 3, these
results do not carry over to other definitions LρU (for non-rectangular regions R).

12 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

sol+(u1)

sol+(u2)

sol+(u3)

sol+(u4)

sol+(u5)
sol+(u6)

x̄+ρ

...

Fig. 8: Imprecise solutions and the up-
per bound x̄′ρ of the prediction region.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reliability(t1)

E
x
p

ec
te

d
co

st
(t

1
)

Imprecise (c+ρ = 3)
Precise (c∗ρ = 4)

•

•

•
•

•

•

•

1

2

34
5 6

7

Fig. 9: Complexity of the imprecise so-
lution vs. that of the precise solution.

4.1 Prediction regions on imprecise solutions

In this section, we show how to compute R ⊇ R∗ρ, satisfying the first term in
the premise of Lemma 1. We construct a conservative box around the imprecise
solutions as in Fig. 9, containing both sol−(u) and sol+(u). We compute this box
by solving the following problem GρU as a modified version of LρU in Eq. (2):

GρU : minimize ‖x̄−
¯
x‖1 + ρ

n∑
i=1

‖ξi‖1 (6a)

subject to
¯
x− ξi ≤ sol−(ui), sol+(ui) ≤ x̄+ ξi ∀i = 1, . . . , n. (6b)

We denote the optimal solution of GρU by [
¯
x′ρ, x̄

′
ρ], ξ

′
ρ (recall that the optimum

to LρU is written as [
¯
x∗ρ, x̄

∗
ρ], ξ

∗
ρ).6 If a sample ui ∈ VM in problem GρU is relaxed

(i.e., has a non-zero ξi), part of the interval [sol−(ui), sol
+(ui)] is not contained

in the prediction region. The following result (for which the proof is in App. B.3)
relates LρU and GρU , showing that we can use [

¯
x′ρ, x̄

′
ρ] as R in Lemma 1.

Theorem 2. Given ρ, sample set Un, and prediction region [
¯
x′ρ, x̄

′
ρ] to problem

GρU , it holds that [
¯
x∗ρ, x̄

∗
ρ] ⊆ [

¯
x′ρ, x̄

′
ρ], with [

¯
x∗ρ, x̄

∗
ρ] the optimal solution to LρU .

We note that this result is not trivial. In particular, the entries ξi from both
LPs are incomparable, as are their objective functions. Instead, Theorem 2 relies
on two observations. First, due to the use of the 1-norm, the LP GρU can be
decomposed into n individual LPs, whose results combine into a solution to
the original LP. This allows us to consider individual dimensions. Second, the
solution vectors that are relaxed depend on the value of ρ and on their relative
order, but not on the precise position within that order, which is also illustrated
by Example 1. In combination with the observation from Example 1 that the
outermost samples are relaxed at the (relatively) highest ρ, we can provide
conservative guarantees on which samples are (or are surely not) relaxed. We
formalize these observations and provide a proof of Theorem 2 in App. B.3.

6 We write [
¯
x∗ρ, x̄

∗
ρ] and [

¯
x′ρ, x̄

′
ρ], as results in Sect. 4 apply only to rectangular regions.

Sampling-Based Verification of CTMCs with Uncertain Rates 13

4.2 Computing the complexity

To satisfy the second term of the premise in Lemma 1, we compute an upper
bound on the complexity. We first present a negative result. Let the complexity
c′ρ of problem GρU be defined analogous to Def. 7, but with [

¯
x′ρ, x̄

′
ρ] as the region.

Lemma 2. In general, c∗ρ ≤ c′ρ does not hold.

Proof. In Fig. 9, the smallest critical set for the imprecise solutions are those
labeled {1, 2, 7}, while this set is {1, 3, 5, 7} under precise solutions, so c∗ρ > c′ρ.

Thus, we cannot upper bound the complexity directly from the result to GρU . We
can, however, determine the samples that are certainly not in any critical set
(recall Def. 7). Intuitively, a sample is surely noncritical if its (imprecise) solution
is strictly within the prediction region and does not overlap with any solution on
the region’s boundary. In Fig. 8, sample u6 is surely noncritical, but sample u5 is
not (whether u5 is critical depends on its precise solution). Formally, let δR be
the boundary7 of region [

¯
x′ρ, x̄

′
ρ], and let B be the set of samples whose solutions

overlap with δR, which is B = {u ∈ Un : [sol−(u), sol+(u)] ∩ δR 6= ∅}.

Definition 8. For a region [
¯
x′ρ, x̄

′
ρ], let I ⊂ [

¯
x′ρ, x̄

′
ρ] be the rectangle of largest

volume, such that I ∩ [sol−(u), sol+(u)] = ∅ for any u ∈ B. A sample ui ∈ VM
is surely noncritical if [sol−(ui), sol

+(ui)] ⊆ I. The set of all surely noncritical
samples w.r.t. the (unknown) prediction region [

¯
x∗ρ, x̄

∗
ρ] is denoted by X ⊂ Un.

As a worst case, any sample not surely noncritical can be in the smallest critical
set, leading to the following bound on the complexity as required by Lemma 1.

Theorem 3. Let X be the set of surely noncritical samples. Then c∗ρ ≤ |Un \ X |.

The proof is in App. B.4. For imprecise solutions, the bound in Theorem 3 is
conservative but can potentially be improved, as discussed in the following.

4.3 Solution refinement scheme

Often, we can refine imprecise solutions arbitrarily (at the cost of an increased
computation time). Doing so, we can improve the prediction regions and upper
bound on the complexity, which in turn improves the computed bound on the
containment probability. Specifically, we propose the following rule for refining
solutions. After solving GρU for a given set of imprecise solutions, we refine the
solutions on the boundary of the obtained prediction region. We then resolve
problem GρU , thus adding a loop back from (4) to (2) in our algorithm shown in
Fig. 7. In our experiments, we demonstrate that with this refinement scheme, we
iteratively improve our upper bound d ≥ c∗ρ and the smallest superset R ⊇ R∗ρ.

7 The boundary of a compact set is defined as its closure minus its interior [45].

14 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

5 Batch Verification for CTMCs

One bottleneck in our method is to obtain the necessary number of solution
vectors sol(Un) by model checking. The following improvements, while mild, are
essential in our implementation and therefore deserve a brief discussion.

In general, computing sol(u) via model checking consists of two parts. First,
the high-level representation of the upCTMC —given in Prism [42], JANI [12], or
a dynamic fault tree8— is translated into a concrete CTMC M[u]. Then, from
M[u] we construct sol(u) using off-the-shelf algorithms [6]. We adapt the pipeline
by tailoring the translation and the approximate analysis as outlined below.

Our implementation supports two methods for building the concrete CTMC
for a parameter sample: (1) by first instantiating the valuation in the specification
and then building the resulting concrete CTMC, or (2) by first building the
pCTMC M (only once) and then instantiating it for each parameter sample to
obtain the concrete CTMCM[u]. Which method is faster depends on the specific
model (we only report results for the fastest method in Sect. 6 for brevity).

Partial models. To accelerate the time-consuming computation of solution vectors
by model-checking on large models, it is natural to abstract the models into smaller
models amenable to faster computations. Similar to ideas used for dynamic fault
trees [55] and infinite CTMCs [48], we employ an abstraction which only keeps
the most relevant parts of a model, i.e., states with a sufficiently large probability
to be reached from the initial state(s). Analysis on this partial model then yields
best- and worst-case results for each measure by assuming that all removed states
are either target states (best case) or are not (worst case), respectively. This
method returns imprecise solution vectors as used in Sect. 4, which can be refined
up to an arbitrary precision by retaining more states of the original model.

Similar to building the complete models, two approaches are possible to create
the partial models: (1) fixing the valuation and directly abstracting the concrete
CTMC, or (2) first building the complete pCTMC and then abstracting the
concrete CTMC. We reuse partial models for similar valuations to avoid costly
computations. We cluster parameter valuations which are close to each other (in
Euclidean distance). For parameter valuations within one cluster, we reuse the
same partial model (in terms of the states), albeit instantiating it according to
the precise valuation.

6 Experiments

We answer three questions about (a prototype implementation of) our approach:
Q1. Can we verify CTMCs taking into account the uncertainty about the rates?
Q2. How well does our approach scale w.r.t. the number of measures and samples?
Q3. How does our approach compare to näıve baselines (to be defined below)?

Setup. We implement our approach using the explicit engine of Storm [37] and
the improvements of Sec. 5 to sample from upCTMCs in Python. Our current

8 Fault trees are a common formalism in reliability engineering [51].

Sampling-Based Verification of CTMCs with Uncertain Rates 15

Table 1: Excerpt of the benchmark statistics (sampling time is per 100 CTMCs).
Model size Storm run time [s] Scen.opt. time [s]

benchmark |Φ| #pars #states #trans Init. Sample (×100) N = 100 N = 200

SIR (140) 26 2 9 996 19 716 0.29 2947.29 18.26 63.27
SIR (140)a 26 2 9 996 19 716 0.29 544.27 25.11 129.66
Kanban (3) 4 13 58 400 446 400 4.42 46.95 2.28 6.69
Kanban (5) 4 13 2 546 432 24 460 016 253.39 4363.63 2.03 5.94
polling (9) 2 2 6 912 36 864 0.64 22.92 2.13 6.66
buffer 2 6 5 632 21 968 0.48 20.70 1.21 4.15
tandem (31) 2 5 2 016 6 819 0.11 862.41 5.19 24.30
rbc 40 6 2 269 12 930 0.01 1.40 5.27 16.88
rc (1,1) 25 21 8 401 49 446 27.20 74.90 5.75 20.34

rc (1,1)a 25 21 n/ab n/ab 0.02 2.35 29.23 150.61

rc (2,2)a 25 29 n/ab n/ab 0.03 27.77 24.86 132.63

hecs (2,1)a 25 5 n/ab n/ab 0.02 9.83 26.78 145.77

hecs (2,2)a 25 24 n/ab n/ab 0.02 194.25 33.06 184.32

a Computed using approximate model checking up to a relative gap between upper
bound sol+(u) and lower bound sol−(u) below 1% for every sample u ∈ VM.

b Model size is unknown, as the approximation does not build the full state-space.

Ex
tin

ct
io

n
pr

ob
ab

ili
ty

Fig. 10: Prediction regions for the
SIR (60) benchmark with n = 400.

Fig. 11: Pareto front for the buffer
benchmark with n = 200 samples.

implementation is limited to pCTMC instantiations that are graph-preserving,
i.e. for any pair s, s′ ∈ S either R(s, s′)[u] = 0 or R(s, s′)[u] > 0 for all u. We
solve optimization problems using the ECOS solver [29]. All experiments ran
single-threaded on a computer with 32 3.7 GHz cores and 64 GB RAM. We
show the effectiveness of our method on a large number of publicly available
pCTMC [35] and fault tree benchmarks [50] across domains (details in App. C).

Q1. Applicability

An excerpt of the benchmark statistics is shown in Tab. 1 (see Tab. 4 in App. C
for the full table). For all but the smallest benchmarks, sampling and computing
the solution vectors by model checking is more expensive than solving the scenario
problems. In the following, we illustrate that 100 samples are sufficient to provide
qualitatively good prediction regions and associated lower bounds.

16 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

Table 2: Lower bounds µ̄ and standard deviation (SD), vs. the observed number
of 1 000 additional solutions that indeed lie within the obtained regions.

(a) Kanban (3).

β = 0.9 β = 0.999 Frequentist

n µ̄ SD µ̄ SD Observed

100 0.862 0.000 0.798 0.000 959 ± 22.7
200 0.930 0.000 0.895 0.000 967 ± 17.4
400 0.965 0.001 0.947 0.001 984 ± 8.6
800 0.982 0.000 0.973 0.000 994 ± 3.2

(b) Railway crossing (1,1,hc).

β = 0.9 β = 0.999 Frequentist

n µ̄ SD µ̄ SD Observed

100 0.895 0.018 0.835 0.020 954 ± 26.8
200 0.945 0.007 0.912 0.008 980 ± 12.8
400 0.975 0.004 0.958 0.005 990 ± 8.3
800 0.986 0.002 0.977 0.003 995 ± 4.3

Plotting prediction regions. Fig. 10 presents prediction regions on the extinction
probability of the disease in the SIR model and is analogous to the tubes in
Fig. 2d (see Fig. 14 and 15 in App. C.1 for plots for various other benchmarks).
These regions are obtained by applying our algorithm with varying values for the
cost of relaxation ρ. For a confidence level of β = 99%, the widest (smallest) tube
in Fig. 10 corresponds to a lower bound probability of µ = 91.1% (µ = 23.9%).
Thus, we conclude that, with a confidence of at least 99%, the curve created by
the CTMC for any sampled parameter value will lie within the outermost region
in Fig. 10 with a probability of at least 91.1%. We highlight that our approach
supports more general prediction regions. We show n = 200 solution vectors for
the buffer benchmark with two measures in Fig. 11 and produce regions that
approach the Pareto front. For a confidence level of β = 99%, the outer prediction
region is associated with a lower bound probability of µ = 91.1%, while the inner
region has a lower value of µ = 66.2%. We present more plots in App. C.1.

Tightness of the solution. In Tab. 2 we investigate the tightness of our results. For
the experiment, we set ρ = 1.1 and solve LρU for different values of n, repeating
every experiment 10 times, resulting in the average bounds µ̄. Then, we sample
1 000 solutions and count the observed number of solutions contained in every
prediction regions, resulting in an empirical approximation of the containment
probability. Recall that for ρ > 1, we obtain a prediction region that contains all
solutions, so this observed count grows toward n. The lower bounds grow toward
the empirical count for an increased n, with the smallest difference (RC, n = 800,
β = 0.9) being as small as 0.9%. Similar observations hold for other values of ρ.

Handling imprecise solutions. The approximate model checker is significantly
faster (see Tab. 1 for SIR (140) and RC), at the cost of obtaining imprecise
solution vectors.9 For SIR (140), the sampling time is reduced from 49 to 9 min,
while the scenario optimization time is slightly higher at 129 s. This difference
only grows larger with the size of the CTMC. For the larger instances of RC and
HECS, computing exact solutions is infeasible at all (one HECS (2,2) sample
alone takes 15 min). While the bounds on the containment probability under
imprecise solutions may initially be poor (see Fig. 12a, which results in µ = 2.1%),

9 We terminate at a relative gap between upper/lower bound of the solution below 1%.

Sampling-Based Verification of CTMCs with Uncertain Rates 17

Table 3: Run times in [s] for solving the scenario problems for SIR and RC with
ρ = 0.1 (timeout (TO) of 1 hour) for different sample sizes n and measures m.

(a) SIR (population 20).

n / m 50 100 200 400 800

100 0.97 1.59 3.36 9.17 25.41
200 3.69 7.30 22.91 59.45 131.78
400 29.43 76.13 153.03 310.67 640.70
800 261.97 491.73 955.77 1924.15 TO

(b) Railway crossing (1,1,hc).

n / m 50 100 200 400

100 1.84 3.40 8.18 24.14
200 6.35 14.56 45.09 113.09
400 34.74 96.68 203.77 427.80
800 292.32 579.09 1215.67 2553.98

we can improve the results significantly using the refinement scheme proposed
in Sect. 4.3. For example, Fig. 12c shows the prediction region after refining 31
of the 100 solutions, which yields µ = 74.7%. Thus, by iteratively refining only
the imprecise solutions on the boundary of the resulting prediction regions, we
significantly tighten the obtained bounds on the containment probability.

Q2. Scalability

In Tab. 3, we report the run times for steps (3)-(5) of our algorithm shown in
Fig. 7 (i.e., for solving the scenario problems, but not for computing the solution
vectors in Storm). Here, we solve problem LρU for ρ = 0.1, with different numbers
of samples and measures. Our approach scales well to realistic numbers of samples
(up to 800) and measures (up to 400). The computational complexity of the
scenario problems is largely independent of the size of the CTMC, and hence,
similar run times are observed across the benchmarks (cf. Tab. 1).

Q3. Comparison to baselines

We compare against two baselines: (1) Scenario optimization to analyze each
measure independently, yielding a separate probabilistic guarantee on each mea-
sure. (2) A frequentist (Monte Carlo) baseline, which samples a large number of
parameter values and counts the number of associated solutions within a region.

(a) No solutions refined. (b) Intermediate step. (c) 31 refined solutions.

Fig. 12: Refining imprecise solution vectors (red boxes) for RC (2,2), n = 100.

18 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

Analyzing measures independently. To show that analyzing a full set of measures
at once, e.g., the complete probability curve, is essential, we compare our method
to the baseline that analyzes each measure independently and combines the
obtained bounds on each measure afterward. We consider the PCS benchmark
with precise samples and solve LρU for ρ = 2 (see Tab. 5 in App. C for details). For
n = 100 samples and β = 99%, our approach returns a lower bound probability
of µ = 84.8%. By contrast, the näıve baseline yields a lower bound of only 4.5%,
and similar results are observed for different values of n (cf. Tab. 5). There are
two reasons for this large difference. First, the baseline applies Theorem 3 once
for each of the 25 measures, so it must use a more conservative confidence level
of β̃ = 1− 1−β

25 = 0.9996. Second, the baseline takes the conjunction over the 25
independent lower bounds, which drastically reduces the obtained bound.

Frequentist baseline. The comparison to the frequentist baseline on the Kanban
and RC benchmarks yields the previously discussed results in Tab. 2. The results
in Tab. 1 and 3 show that the time spent for sampling is (for most benchmarks)
significantly higher than for scenario optimization. Thus, our scenario-based
approach has a relatively low cost, while resulting in valuable guarantees which
the baseline does not give. To still obtain a high confidence in the result, a much
larger sample size is needed for the frequentist baseline than for our approach.

7 Related Work

Several verification approaches exist to handle uncertain Markov models.

For (discrete-time) interval Markov chains (DTMCs) or Markov decision
processes (MDPs), a number of approaches verify against all probabilities within
the intervals [32,39,46,53,54]. Lumpability of interval CTMCs is considered in [21].
In contrast to upCTMCs, interval Markov chains have no dependencies between
transition uncertainties and no distributions are attached to the intervals.

Parametric Markov models generally define probabilities or rates via functions
over the parameters. The standard parameter synthesis problem for discrete-
time models is to find all valuations of parameters that satisfies a specification.
Techniques range from computing a solution function over the parameters, to
directly solving the underlying optimization problems [24,28,33,40]. Parametric
CTMCs are investigated in [22,34], but are generally restricted to a few parameters.
The work [14] aims to find a robust parameter valuation in pCTMCs.

For all approaches listed so far, the results may be rather conservative, as
no prior information on the uncertainties (the intervals) is used. That is, the
uncertainty is not quantified and all probabilities or rates are treated equally as
likely. In our approach, we do not compute solution functions, as the underlying
methods are computationally expensive and usually restricted to a few parameters.

Quantified uncertainty is studied in [44]. Similarly to our work, the approach
draws parameter values from a probability distribution over the model parameters
and analyzes the instantiated model via model checking. However, [44] studies
DTMCs and performs a frequentist (Monte Carlo) approach, cf. Sect. 6, to

Sampling-Based Verification of CTMCs with Uncertain Rates 19

compute estimates for a single measure, without prediction regions. Moreover,
our approach requires significantly fewer samples, cf. the comparison in Sect. 6.

The work in [9,10] takes a sampling-driven Bayesian approach for pCTMCs.
In particular, they take a prior on the solution function over a single measure and
update it based on samples (potentially obtained via statistical model checking).
We assume no prior on the solution function, and, as mentioned before, do not
compute the solution function due to the expensive underlying computations.

Statistical model checking (SMC) [1,43] samples path in stochastic models to
perform model checking. This technique has been applied to numerous models [25–
27,47], including CTMCs [52,57]. SMC analyzes a concrete CTMC by sampling
from the known transition rates, whereas for upCTMC these rates are parametric.

Finally, scenario optimization [15,20] is widely used in control theory [13]
and recently in machine learning [19] and reliability engineering [49]. Within a
verification context, closest to our work is [5], which considers the verification
of single measures for uncertain MDPs. [5] relies on the so-called sampling-and-
discarding approach [16], while we use the risk-and-complexity perspective [31],
yielding better results for problems with many decision variables like we have.

8 Conclusion

This paper presents a novel approach to the analysis of parametric Markov
models with respect to a set of performance characteristics. In particular, we
provide a method that yields statistical guarantees on the typical performance
characteristics from a finite set of samples of those parameters. Our experiments
show that high-confidence results can be given based on a few hundred of samples.
Future work includes supporting models with nondeterminism, exploiting aspects
of parametric models such as monotonicity, and integrating methods to infer the
distributions on the parameter space from observations.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

2. Allen, L.J.: A primer on stochastic epidemic models: Formulation, numerical simu-
lation, and analysis. Infectious Disease Modelling 2(2), 128–142 (2017)

3. Andersson, H., Britton, T.: Stochastic epidemic models and their statistical analysis,
vol. 151. Springer Science & Business Media (2012)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

5. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.:
Scenario-based verification of uncertain parametric MDPs. CoRR abs/2112.13020
(2021)

6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541
(2003)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

20 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

8. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to probability. Athena Scientinis
(2000)

9. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

10. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: TACAS. LNCS, vol. 10806, pp. 396–413.
Springer (2018)

11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York, NY, USA (2004)

12. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: TACAS. LNCS, vol. 10206, pp.
151–168 (2017)

13. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design.
IEEE Trans. Autom. Control. 51(5), 742–753 (2006)

14. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

15. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain
convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)

16. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-
constrained optimization: Feasibility and optimality. J. Optim. Theory Appl. 148(2),
257–280 (2011)

17. Campi, M.C., Garatti, S.: Introduction to the scenario approach. SIAM (2018)
18. Campi, M.C., Garatti, S.: Wait-and-judge scenario optimization. Math. Program.

167(1), 155–189 (2018)
19. Campi, M.C., Garatti, S.: Scenario optimization with relaxation: a new tool for

design and application to machine learning problems. In: CDC. pp. 2463–2468.
IEEE (2020)

20. Campi, M., Carè, A., Garatti, S.: The scenario approach: A tool at the service of
data-driven decision making. Annual Reviews in Control 52, 1–17 (2021)

21. Cardelli, L., Grosu, R., Larsen, K.G., Tribastone, M., Tschaikowski, M., Vandin,
A.: Lumpability for uncertain continuous-time Markov chains. In: QEST. LNCS,
vol. 12846, pp. 391–409. Springer (2021)

22. Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017)

23. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. ICASE report 96-35. Institute for Computer
Applications in Science and Engineering 50 (1996)

24. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex optimization
for parameter synthesis in MDPs. IEEE Trans Autom Control pp. 1–1 (2022)

25. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: ISoLA. LNCS, vol. 11245, pp. 336–353.
Springer (2018)

26. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

27. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: CAV. LNCS, vol. 6806, pp. 349–355.
Springer (2011)

28. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: ICTAC. pp. 280–294. Springer (2004)

Sampling-Based Verification of CTMCs with Uncertain Rates 21

29. Domahidi, A., Chu, E., Boyd, S.P.: ECOS: an SOCP solver for embedded systems.
In: ECC. pp. 3071–3076. IEEE (2013)

30. Garatti, S., Campi, M.C.: The risk of making decisions from data through the lens
of the scenario approach. IFAC-PapersOnLine 54(7), 607–612 (2021)

31. Garatti, S., Campi, M.: Risk and complexity in scenario optimization. Mathematical
Programming pp. 1–37 (2019)

32. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1-2), 71–109 (2000)

33. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

34. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: RTSS. pp. 173–182. IEEE CS (2008)

35. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: TACAS. LNCS, vol. 11427, pp. 344–350.
Springer (2019)

36. Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS. pp. 228–237. IEEE CS (2000)

37. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Softw Tools Technol Transfer (2021)

38. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision diagrams
to represent and analyse continuous time Markov chains. In: 3rd Int. Workshop on
the Numerical Solution of Markov Chains. pp. 188–207. Citeseer (1999)

39. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS. pp. 266–277. IEEE CS (1991)

40. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.P., Quatmann, T., Volk,
M.: Parameter synthesis for Markov models. CoRR abs/1903.07993 (2019)

41. Katoen, J.P.: The probabilistic model checking landscape. In: LICS. pp. 31–45.
ACM (2016)

42. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011)

43. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statistical
model checking. In: Computing and Software Science, LNCS, vol. 10000, pp. 478–504.
Springer (2019)

44. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Evaluating probabilistic models
with uncertain model parameters. Softw. Syst. Model. 13(4), 1395–1415 (2014)

45. Mendelson, B.: Introduction to topology. Courier Corporation (1990)
46. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time

verification of PCTL properties of MDPs with convex uncertainties. In: CAV. LNCS,
vol. 8044, pp. 527–542. Springer (2013)

47. Rao, K.D., Gopika, V., Rao, V.V.S.S., Kushwaha, H.S., Verma, A.K., Srividya, A.:
Dynamic fault tree analysis using monte carlo simulation in probabilistic safety
assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)

48. Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z.: STAMINA 2.0:
Improving scalability of infinite-state stochastic model checking. In: VMCAI. LNCS,
vol. 13182, pp. 319–331. Springer (2022)

49. Rocchetta, R., Crespo, L.G.: A scenario optimization approach to reliability-based
and risk-based design: Soft-constrained modulation of failure probability bounds.
Reliability Engineering & System Safety 216, 107900 (2021)

50. Ruijters, E., Budde, C.E., Nakhaee, M.C., Stoelinga, M.I.A., Bucur, D., Hiemstra,
D., Schivo, S.: FFORT: a benchmark suite for fault tree analysis. In: ESREL (2019)

22 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

51. Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

52. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: CAV. LNCS, vol. 3576, pp. 266–280. Springer (2005)

53. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: TACAS. pp. 394–410. Springer (2006)

54. Skulj, D.: Discrete time Markov chains with interval probabilities. Int. J. Approx.
Reason. 50(8), 1314–1329 (2009)

55. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Informatics 14(1), 370–379 (2018)

56. Wijesuriya, V.B., Abate, A.: Bayes-adaptive planning for data-efficient verification
of uncertain Markov decision processes. In: QEST. LNCS, vol. 11785, pp. 91–108.
Springer (2019)

57. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

Sampling-Based Verification of CTMCs with Uncertain Rates 23

A Additional Examples

In the following example, we discuss the results shown in Fig. 5 in more detail.

Example 4. We consider the Kanban manufacturing system benchmark from [23]
with a Gaussian distribution over the parameters. In Fig. 5, we present n = 25
solution vectors for two expected cost measures. We use these solutions in problem
LρU in Eq. (2), and solve for ρ = 2, 0.4, and 0.15. We show the three resulting
prediction regions in Fig. 5. For ρ = 2, the prediction region contains all vectors,
while for a lower cost of relaxation ρ, more vectors are left outside.

B Proofs

B.1 Proof of Theorem 1

The proof of Theorem 1 is based on [20], which states that for a complexity c∗ρ
and for η(c∗ρ) the smallest positive solution to Eq. (4), it holds that

Pn
{
V
(
R∗ρ) ≤ 1− η(c∗ρ)

}
≥ β, (7)

where V (R∗ρ) is the so-called violation probability, which is defined as

V (R∗ρ) = Pr{u ∈ VM : sol(u) /∈ R∗ρ}. (8)

Observe that contain(R∗ρ) + V (R∗ρ) = 1. Thus, we rewrite Eq. (7) as

Pn
{
contain(R∗ρ) ≥ η(c∗ρ)

}
≥ β. (9)

Note that η(c) is monotonically decreasing in c [30], so for any d∗ρ ≥ c∗ρ, we have
η(d∗ρ) ≤ η(c∗ρ). Hence, Eq. (9) also implies Eq. (3), which concludes the proof.

B.2 Proof of Lemma 1

Recall from the proof of Theorem 1 that for η(c∗ρ) the solution to Eq. (4), where
c∗ρ is the true complexity of problem LρU , it holds that

Pn
{
contain

(
R∗ρ
)
≥ η(c∗ρ)

}
≥ β. (10)

Observe that for any two sets R∗ρ ⊆ R, we have contain
(
R
)
≥ contain

(
R∗ρ
)
.

Moreover, recall that η(c) is monotonically decreasing in c (as also observed
visually from Fig. 6), and thus, the condition c∗ρ ≤ d implies that η(d) ≤ η(c∗ρ).
Hence, under the proposed conditions, we rewrite Eq. (10) as the right-hand side
of Eq. (5), which concludes the proof.

B.3 Proof of Theorem 2

The one-dimensional case. Let us first consider the case for one dimension,
i.e., one measure. Recall from Example 1 that for precise solutions in 1D, the

24 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

sol+(u1)
num+

≥(u1) = 1

sol+(u2)
num+

≥(u2) = 2
sol+(u3)
num+

≥(u3) = 3
sol+(u4)

num+
≥(u4) = 4

sol+(u5)
num+

≥(u5) = 5sol+(u6)
num+

≥(u6) = 6

x̄+ρ

...

Fig. 13: The upper bounds of five imprecise solutions and their values of sol+≥(u).

outermost two samples (labeled A and F) are relaxed under the (unique) optimal
solution if ρ < 1, samples B and E if ρ < 1

2 , etc. Denote by sol−(u)r = sol−,ϕrM[u] and

sol+(u)r = sol+,ϕrM[u] the r-th entries of the respective imprecise solution vectors,

i.e., the (upper and lower bound) solutions for measure ϕr ∈ Φ and the CTMC
created by sample u ∈ VM. In formalizing the relationship between the value of
ρ and whether a sample is relaxed, we state the following definition:

Definition 9. Let r ≤ |Φ|. For any (sol(ui)
−, sol(ui)

+), we define num+
≥(ui)r ∈

{1, . . . , n} and num−≤(ui)r ∈ {1, . . . , n} as the number of samples whose upper

bound is at least sol+(ui) (or at most sol−(ui)), when projected to dimension r:

num+
≥(ui)r =

∣∣{uj ∈ VM : sol+(uj)r ≥ sol+(ui)r}
∣∣

num−≤(ui)r =
∣∣{uj ∈ VM : sol−(uj)r ≤ sol−(ui)r}

∣∣.
Fig. 13 shows an extended version of Fig. 8 which also presents the values of
num+

≥(u) for the upper bounds on the imprecise solutions. The following lemma
then characterizes the relaxed solutions:

Lemma 3. An imprecise solution (sol−(u), sol+(u)), u ∈ VM is not contained
in the prediction region [

¯
x′ρ, x̄

′
ρ] of GρU , projected to dimension p ≤ |Φ|, if

ρ < min
{
num+

≥(u)p, num
−
≤(u)p

}−1

. (11)

For precise solutions, there is no distinction between sol−(ui) and sol+(ui), and
Def. 9 yields the sets num≥(ui)r and num≤(ui)r. We can check whether a precise
solution sol(u) is contained in the prediction region [

¯
x∗ρ, x̄

∗
ρ] to LρU by replacing

num+ → num and num− → num in Eq. (11).

Proof of Theorem 2 (part I). We proof the theorem by contradiction for the 1-
dimensional case, and we generalize afterward. In a single dimension, [

¯
x∗ρ, x̄

∗
ρ] 6⊆

[
¯
x′ρ, x̄

′
ρ] requires that either

¯
x∗ρ < ¯

x′ρ or x̄∗ρ > x̄′ρ. First consider the upper bounds

Sampling-Based Verification of CTMCs with Uncertain Rates 25

x̄′ρ and x̄∗ρ, which we can make explicit using Lemma 3:

x̄′ρ = max
{
sol+(u), u ∈ VM : num+

≥(u) > ρ−1
}

(12)

x̄∗ρ = max
{
sol(u), u ∈ VM : num≥(u) > ρ−1

}
. (13)

For x̄∗ρ > x̄′ρ to hold, the maximum num≥(u) > ρ−1 (i.e., the highest precise
solution for which there are more than ρ−1 solutions at least as high) must exceed
num+

≥(u) > ρ−1 (the highest imprecise upper bound solution for which there

are more than ρ−1 imprecise upper bound solutions at least as high). This can
only be true if the number of samples for which sol(u) > x̄′ is higher than the
number for which sol+(u) > x̄′. However, by construction, sol(u) ≤ sol+, so this
is impossible, and thus, it holds that x̄∗ρ ≤ x̄′ρ. While omitted for brevity, the
proof that the lower bound

¯
x∗ρ ≥ x̄′ρ follows analogous to the upper bound.

The multi-dimensional case.

Lemma 4. Problem GρU can be decomposed into an independent problem for
every dimension 1, . . . ,m, with m = |Φ| the number of measures in Φ.

Lemma 4 holds because the objective Eq. (2a) is additive and all constraints for
all measures Eq. (2b) are independent. Thus, we can equivalently solve problem
LρU for all m measures separately.

Proof of Theorem 2 (part II). We now generalize the result to multiple dimen-
sions. Lemma 4 states that for rectangular prediction regions, problems LρU and
GρU can be solved for each dimension separately. As such, we obtain an element-
wise inequality

¯
x′ρ ≤ ¯

x∗ρ ≤ x̄∗ρ ≤ x̄∗ρ, which also implies that [
¯
x∗ρ, x̄

∗
ρ] ⊆ [

¯
x′ρ, x̄

′
ρ], so

the claim in follows.

B.4 Proof of Theorem 3

Before providing the proof, we state the following useful lemma about surely
noncritical samples:

Lemma 5. Any surely noncritical sample cannot be in the (smallest) critical
set, defined in Def. 7.

Proof. Recall from Def. 7 that a sample may (potentially) be critical if it is either
outside or on the boundary of the prediction region [

¯
x∗ρ, x̄

∗
ρ]. While the boundary

of the prediction region [
¯
x∗ρ, x̄

∗] is unknown, it cannot be smaller than the inner
rectangle I defined in Def. 8. By construction, any surely noncritical sample is
a subset of this set I. Hence, any surely noncritical sample cannot be in the
(smallest) critical set, and the claim follows.

The proof of Theorem 3 now follows almost directly from Lemma 5. The complex-
ity is the cardinality of the smallest critical set, which cannot contain any surely
noncritical sample, as stated by Lemma 5. Hence, it follows that n−|X| = |Un\X |,
where X is the set of surely noncritical samples, which concludes the proof.

26 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

C Detailed Benchmark Overview and Results

In this appendix, we illustrate on two specific benchmarks how we convert
a pCTMC into a upCTMC by equipping its parameters with a probability
distribution. We omit details on the other benchmarks for brevity. Thereafter, we
present the full benchmark statistics in Tab. 4, as well as more graphical outputs
of our implementation in Fig. 14 and 15.

Epidemic modeling. We consider the classical SIR infection model [3] of
an infectious disease spreading through a population. The factored state s =
(S̄, Ī, R̄) of this CTMC counts the susceptible, infected, and recovered populations.
Infections and recoveries (we assume that immunization is permanent) occur
based on the following parametric rules that depend on parameters λi and λr:

Infection: S + I
λi·S̄·Ī−−−−→ I + I, Recovery: I

λr·Ī−−−→ R.

In the classical SIR model, λi and λr are assumed to be known precisely, while
we consider the parameters λi = N (0.05, 0.002) and λr = N (0.04, 0.002) to be
normally distributed (recall that we only use samples from these distributions).
We define a set Φ = {ϕ100+100i : i = 1

m ,
2
m , . . . ,

m−1
m , 1} of m measures, where

ϕt is the probability that the disease becomes extinct between time 100 and t:

ϕt = (Ī > 0)U[100,t](Ī = 0). (14)

Buffer system. We augment the producer-consumer buffering system from [14].
We equip the six parameters of this pCTMC by uniform probability distributions
with their domains specified below. This pCTMC models the transfer of requests
from a producer (at a rate of λg ∈ [32, 38]) to consumers who consume them (at
a rate of λc ∈ [27, 33]). The requests are sent at a rate of λt ∈ [27, 33], via either
a slow or a fast buffer, with probabilities of 0.6 and 0.4, respectively. While being
faster, the fast buffer is less reliable than the slow buffer (it loses requests with
a probability λloss ∈ [0.025, 0.075]), and has a smaller capacity. Requests from
the slow buffer are transferred to the fast buffer with a probability proportional
to the occupancy. The transmission rate of the slow buffer is λslow ∈ [5, 15]; the
rate of the fast buffer is λδ ∈ [5, 15] higher. We consider two measures: (1) the
expected transferred requests until time 25, and (2) the probability that the
utilization of both buffers is above 75% within the time [20, 25].

C.1 Detailed results

The complete overview of the statistics of all benchmarks is shown in Tab. 4.
Running polling (15) for n = 200 samples led to a timeout, due to the very
high sampling times (sampling 100 solutions already takes over 3.5 hours). The
obtained prediction regions for eight benchmarks (under precise solutions) are
presented in Fig. 14 and 15. These plots demonstrate the wide applicability and
effectiveness of our method on a large variety of benchmarks.

Analyzing measures independently. Tab. 5 presents the full comparison on

Sampling-Based Verification of CTMCs with Uncertain Rates 27

Table 4: Model sizes and run times for all benchmarks (the sampling time in
Storm is reported per 100 CTMCs).

Model size Storm run time [s] Scen.opt. time [s]

benchmark |Φ| #pars #states #trans Init. Sample (×100) N = 100 N = 200

SIR (20) 26 2 216 396 0.02 2.93 2.44 10.18
SIR (60) 26 2 1 876 3 636 0.06 121.65 16.91 52.57
SIR (100) 26 2 5 136 10 076 0.15 829.47 19.35 62.74
SIR (100)a 26 2 5 136 10 076 0.15 191.30 27.45 137.76
SIR (140) 26 2 9 996 19 716 0.29 2947.29 18.26 63.27
SIR (140)a 26 2 9 996 19 716 0.29 544.27 25.11 129.66
Kanban (3) 4 13 58 400 446 400 4.42 46.95 2.28 6.69
Kanban (5) 4 13 2 546 432 24 460 016 253.39 4363.63 2.03 5.94
polling (3) 2 2 36 84 0.02 0.08 2.35 7.31
polling (9) 2 2 6 912 36 864 0.64 22.92 2.13 6.66
polling (15) 2 2 737 280 6 144 000 3 908.13 9 509.22 2.07 –
buffer 2 6 5 632 21 968 0.48 20.70 1.21 4.15
tandem (15) 2 5 496 1 619 0.03 82.01 1.67 5.36
tandem (31) 2 5 2 016 6 819 0.11 862.41 5.19 24.30
embed. (64) 3 6 55 868 235 793 3.31 8.07 3.97 12.69
embed. (256) 3 6 218 108 920 657 18.04 33.40 3.99 13.03
pcs 25 6 2 501 14 985 0.03 37.20 3.51 13.07
rbc 40 6 2 269 12 930 0.01 1.40 5.27 16.88
dcas 25 10 64 202 0.01 0.48 3.10 10.88
rc (1,1) 25 21 8 401 49 446 27.20 74.90 5.75 20.34

rc (1,1)a 25 21 n/ab n/ab 0.02 2.35 29.23 150.61

rc (2,2)a 25 29 n/ab n/ab 0.03 27.77 24.86 132.63
hecs (2,1) 25 5 118 945 1 018 603 0.04 6.42 3.87 13.18

hecs (2,1)a 25 5 n/ab n/ab 0.02 9.83 26.78 145.77

hecs (2,2)a 25 24 n/ab n/ab 0.02 194.25 33.06 184.32

a Computed using approximate model checking up to a relative gap between upper
bound sol+(u) and lower bound sol−(u) below 1% for every sample u ∈ VM.

b Model size is unknown, as the approximation does not build the full state-space.

Table 5: Obtained bounds (for the PCS fault tree) on the containment probability
for our approach and the baseline that analyzes each measure independently.

n = 100 n = 200 n = 400 n = 800

Method β = 0.9 β = 0.999 β = 0.9 β = 0.999 β = 0.9 β = 0.999 β = 0.9 β = 0.999

Our approach 0.908 0.848 0.937 0.903 0.976 0.960 0.984 0.975
Baseline 0.045 0.010 0.212 0.103 0.461 0.322 0.679 0.567

the PCS benchmark between our approach and the baseline scenario approach
that analyzes each measure independently. In this table, we report the average
lower bounds (over 10 iterations) on the containment probability, for different
sample sizes n = 100, . . . , 800 and confidence levels β. For the two main reasons
for the significant difference in the tightness of the containment probability, we
refer to Sect. 6 in the main paper.

28 T.S. Badings, N. Jansen, S. Junges, M.I.A. Stoelinga, and M. Volk

2.62 2.66 2.70 2.74
Exp. tokens cell 1

1.7

1.8

1.9

2.0

2.1
Ex

p.
 to

ke
ns

 c
el

l 2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Kanban (3), n = 200.

0.14125 0.14200 0.14275
Prob. station 1 is awaiting service in long run

1.60
1.62
1.64
1.66
1.68
1.70
1.72

Ex
pe

ct
ed

 n
r.

w
ai

tin
g

0.0

0.2

0.4

0.6

0.8

1.0

(b) Polling (9), n = 200.

15.70 15.80 15.90 16.00
Exp. customers at time T=3000

0.000

0.005

0.010

0.015

0.020

Pr
ob

. f
ul

l b
ef

or
e

T=
30

00

0.0

0.2

0.4

0.6

0.8

1.0

(c) Tandem (15), n = 100.

0.1035 0.1055 0.1075
Prob. of failure (down)

8.00

8.05

8.10

8.15

8.20

Pr
ob

. f
ai

lu
re

 b
ef

or
e

12
 h

rs
.

0.0

0.2

0.4

0.6

0.8

1.0x 1e-4

(d) Embedded (64), n = 100.

Fig. 14: Prediction regions for CTMC benchmarks.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 p

ro
ba

bi
lity

0.0

0.2

0.4

0.6

0.8

1.0

(a) PCS, n = 200.

0 50k 100k 150k 200k
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 p

ro
ba

bi
lity

0.0

0.2

0.4

0.6

0.8

1.0

(b) RBC, n = 200.

0 4000 8000 12000 16000
Time

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 p

ro
ba

bi
lity

(c) DCAS, n = 200.

0 10000 20000
Time

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 p

ro
ba

bi
lity

(d) HECS, n = 200.

Fig. 15: Prediction regions on probability curves for fault tree benchmarks.

	Sampling-Based Verification of CTMCs with Uncertain Rates

