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Abstract: We present a Buildings-to-Grid (BtG) integration framework with intermittent wind-power
generation and demand flexibility management provided by buildings. First, we extend the existing BtG
models by introducing uncertain wind-power generation and reformulating the interactions between
the Transmission System Operator (TSO), Distribution System Operators (DSO), and buildings.
We then develop a unified BtG control framework to deal with forecast errors in the wind power,
by considering ancillary services from both reserves and demand-side flexibility. The resulting
framework is formulated as a finite-horizon stochastic model predictive control (MPC) problem,
which is generally hard to solve due to the unknown distribution of the wind-power generation.
To overcome this limitation, we present a tractable robust reformulation, together with probabilistic
feasibility guarantees. We demonstrate that the proposed demand flexibility management can
substitute the traditional reserve scheduling services in power systems with high levels of uncertain
generation. Moreover, we show that this change does not jeopardize the stability of the grid or violate
thermal comfort constraints of buildings. We finally provide a large-scale Monte Carlo simulation
study to confirm the impact of achievements.

Keywords: demand flexibility management; Buildings-to-Grid integration; future energy markets;
Transmission System Operator (TSO); Distribution System Operators (DSO); uncertain generation;
power systems; stochastic model predictive control

1. Introduction

An essential requirement of power grids with high wind-power penetration is the ancillary
reserve power service, which can reduce unwanted power curtailment and enable higher integration
of renewable generation. The reserve scheduling task of the Transmission System Operator (TSO) in
power grids deals with day-ahead scheduling of the generator reserve power, in order to compensate
for mismatches between the forecast and actual wind power [1]. Due to the growing penetration levels
of wind-power generation, TSOs need to deal with increasing levels of uncertainty, thus imposing
novel challenges and responsibilities for TSOs to avoid blackouts and other contingencies. This trend
highlights the necessity for TSOs to introduce new types of ancillary services by enabling end-users
(buildings) demand-side flexibility.

Approximately 40% of the global energy is consumed by buildings, with half of this being directly
related to Heating, Ventilation, and Air Conditioning (HVAC) [2,3]. Buildings control decisions are
typically only optimized locally to minimize energy consumption, but not in the wider scope of
optimal control of the electricity grid. Demand-side flexibility of buildings represents the capability to

Energies 2020, 13, 6532; doi:10.3390/en13246532 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3756-3849
https://orcid.org/0000-0002-5235-1967
http://www.mdpi.com/1996-1073/13/24/6532?type=check_update&version=1
http://dx.doi.org/10.3390/en13246532
http://www.mdpi.com/journal/energies


Energies 2020, 13, 6532 2 of 19

shift production and/or consumption of electricity in time, while still satisfying consumer comfort
requirements, and without changing the total production or consumption [4]. Building demand-side
flexibility has been identified as an important asset for providing ancillary services being managed by
the Distribution System Operators (DSOs) [5,6].

However, TSOs still have a much more prominent role in scheduling ancillary services, and DSOs
often miss a majority of the scheduling information [7]. For a resilient, sustainable power system,
DSOs need monitoring, simulation and control strategies that allow them to act as an active system
operator of the future smart grid. Due to their uncertain and intermittent nature, renewable energy
sources, such as wind power, contribute to power imbalance in the grid, making the task of frequency
control more difficult [8]. Consequently, DSOs have the inevitable task to engage in providing ancillary
services to the grid, in order to secure grid frequency, voltage levels, and the power balance [9].

It is worth noting that flexibility-based services are already available in some countries.
For example, in the United Kingdom, National Grid ESO saw significant reductions in the electricity
demand as a result of the COVID-19 pandemic [10]. As a response, the system operator introduced
a novel Optional Downward Flexibility Management Service, which can curtail energy production
from renewables when demand is lower than forecast [11]. Moreover, the European Network Code
on Requirements for Generators (RfG) was issued in 2016, to harmonize standards that all power
generating units (both conventional and renewable) must respect [12]. To show compliance, all new
generators above 50 MW must undergo extensive simulation and testing, before they are allowed to
connect to the grid [13]. However, despite these illustrative examples, more fundamental research is
required to show the potential and limitations of such flexibility-based services.

The use of consumer appliances to provide dynamical demand response has been studied
extensively in recent work, such as [5,6,14]. The potential of using building HVAC control as a
source of ancillary services for the grid is shown by [15,16]. In [17,18], the authors develop the
so-called Buildings-to-Grid (BtG) integration framework, which couples buildings and grid dynamics
explicitly. Similarly, refs. [19,20] study how building demand response programs can be enabled in
BtG systems via model predictive control (MPC). However, none of these studies explicitly coupled
appliances, e.g., storage systems or building HVAC power load, to the grid dynamics in the presence
of uncertain generation, which highlights the potential of developing a unified control framework to
handle uncertain renewable energy sources in the BtG setting using building demand-side flexibility.

Research Contributions

In this paper, we propose a unified dynamical BtG framework by modeling the building
demand-side flexibility, while also explicitly formulating the hierarchical interactions between the TSO,
DSOs, and buildings. Such a demand-side flexibility asset can be considered to be a short-term operating
reserve, which may yield an economic benefit in a robust fashion. The main novelty of this paper is
that the proposed demand-side flexibility model in the BtG framework with uncertain generation can
substitute the traditional reserve scheduling service in power systems with wind farms, without losing
stability properties of the power grid and violating the buildings desired thermal comfort. This paper
extends our previous work in [21,22], by presenting explicit expressions to quantify the available
building demand-side flexibility from specific assets, and by providing more detailed insights in both
the theoretical and experimental results.

The remaining part of this paper is organized as follows. In Section 2, we present the BtG model
dynamics, and ancillary service deployment via traditional reserves and demand-side flexibility is
discussed in Section 3. Using the proposed BtG model dynamics, we provide a stochastic MPC
formulation in Section 4, and then a robust tractable reformulation in Section 5 to achieve a desired
level of constraints fulfillment with a-priori probabilistic certificates. We simulate an extended version
of an IEEE benchmark case study in Section 6, to demonstrate the functionality of our proposed
hierarchical integrated energy system model and control technique. Finally, our main conclusions are
summarized in Section 7.



Energies 2020, 13, 6532 3 of 19

2. Buildings-to-Grid System Modeling

Consider a hierarchical electrical energy network consisting of one TSO network together with
a wind farm production unit connected to multiple DSO networks, to which individual buildings
are connected.

2.1. Wind Integrated TSO Model Dynamics

Consider T = {1, . . . , nt} to be the set of TSO buses (nodes), G = {1, . . . , ng} to be the set of TSO
generators, and D = {1, . . . , nd} to be the set of DSOs connected to the TSO network. Define also
Γ ∈ Rnt×ng to be an incidence matrix such that the entries, Γk,m, relate generators to the TSO buses,
respectively. The set of neighboring nodes of TSO bus k is defined by T n

k .
The TSO network is modeled using the existing swing equation model, e.g., [21,23], where we

extend the active power swing equation for bus k by integrating wind-power production in the
following form:

mk δ̈k(t) + dk δ̇k(t) = ∑ng
m=1 Γk,m

(
PGRm(t) + Rm(t)

)
+ Pwk (t)− PLDk (t)− SLDk (t) (1)

−∑j∈T n
k

bkj sin(δk(t)− δj(t)),

where δk(t), δ̇k(t) and δ̈k(t) are the voltage angle, angular velocity (frequency), and angular acceleration
of bus k, and mk and dk are inertia and damping coefficients, respectively. The power flow between
buses is considered to be purely reactive, and is characterized by the line susceptance, bkj = bjk, and the
difference in voltage angle, δk(t)− δj(t). The susceptance is the imaginary part of admittance, which is
a measure of how easily a circuit will allow a current to flow through a line [24]. PGRm denotes the
power dispatch of generator m, Pwk is the wind farm power injection at bus k, and PLDk is the load of any
DSO network connected to bus k. Furthermore, Rm and SLDk are generator reserve and demand-side
flexibility power contributions, respectively, which are defined formally in Section 3, and are used to
compensate for errors in the wind-power forecast. Without loss of generality, it is assumed that Pwk

is a realization of an unknown stochastic process defined on some probability space (W ,B(W),P).
It is important to note that we do not require the sample space W and the probability measure P
to be known explicitly, as will be explained later. We only need a finite number of realizations of
the uncertain variable Pwk , and it is sufficient to consider that they are independent and identically
distributed (i.i.d).

The second order differential equation for TSO bus k in Equation (1) can be rewritten as two
first-order equations, by defining the angular frequency deviation ωk = ωtrue

k −ω0, where ωtrue
k is the

absolute frequency of bus k, and ω0 is the synchronous frequency. Using this notation, the complete
TSO network dynamics are captured in the following state-space model:

ẋt(t) = Atxt(t) + BGR(PGR(t) + Rm(t)) + Pw(t)− BLD(PLD(t) + SLDk (t)) + Ψ(δ(t)),

with state variable xt(t) = [δ1, . . . , δnt , ω1, . . . , ωnt ]
>, and appropriate matrices At, BGR, and BLD.

For the full derivation of the system parameters for a similar model without wind-power integration,
the reader is referred to [17,21,25]. The element of vector Ψ(δ(t)) ∈ Rnt for bus k is defined as
ψk = ∑j∈T n

k
bkj sin(δk(t)− δj(t)). PLD(t) ∈ Rnt and SLD(t) ∈ Rnt represent the power demand and

flexibility from all DSO networks connected to the TSO, respectively, and are obtained as follows:PLD(t) = ∑i∈D Pi
LD(t) = ∑i∈D

(
Pi

IMP(t)1ni
d

)
SLD(t) = ∑i∈D Si

LD(t) = ∑i∈D
(
Si

IMP(t)1ni
d

) ,

where Pi
LD, Si

LD ∈ Rnt represent the load and flexibility of DSO i on each TSO bus, respectively.

Pi
IMP ∈ Rnt×ni

d with entries Pi
IMP,kl denotes the active power flow from TSO bus k to bus l of DSO i,
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and is nonzero only for border buses (i.e., buses that are physically connected via a line). Similarly,
Si

IMP represents the flexibility power flow between the TSO and DSO i.

Remark 1. To determine the power flow across the TSO and DSO networks, we follow a DC power
approximation and follow the small-angle approximation to assume that sin(δk(t)− δj(t)) ≈ (δk(t)− δj(t)).
Using such an approximation and letting Lt be the set of lines in the TSO network, we can define the Laplacian
matrix LTSO ∈ R|Lt |×nt for the TSO network with entries defined by

LTSO
k,j =


∑m∈T n

k
[−bkm] if k = j,

bkj if k 6= j, j ∈ T n
k ,

0 otherwise.

(2)

We can now construct the following augmented matrix which can be used to obtain the power flow in the TSO
network lines:

L̃TSO =

[
LTSO 0nt×nt

0nt×nt 0nt×nt

]
. (3)

A similar expression can be written for DSO network to obtain L̃DSO,i for DSO i.

2.2. DSO Model Dynamics

ConsiderDi = {1, . . . , ni
d} to be the set of buses (nodes) of DSO i. Denote byDn,i

l the neighborhood
set of node l of DSO i. Each DSO network is connected to the parent TSO through one or multiple border
buses. DSO network dynamics are the same as in Equation (1), but with the additional assumption that
no generators are connected to DSO buses, leading to m = 0 and d = 0 in the DSO swing equations.
Please note that this is not a restrictive assumption, as the model can easily be extended to include
generation in the DSO network as well. The dynamics at bus l of DSO i are described as

d̂i
l δ̇

i
l(t) =

[
[Pi

IMP(t) + Si
IMP(t)]

>1nt

]
l
− Pi

BDl
(t)− Si

BDl
(t)−∑j∈Dn,i

l
bi

l j sin(δi
l(t)− δi

j(t)), (4)

where the subscript in [·]l denotes element l of the respective vector, d̂i
l δ̇

i
l(t) is the frequency-sensitive

portion of the uncontrollable load at bus l, and Pi
BDl

(t), Si
BDl

(t) denote the total building demand and
flexibility at bus l of DSO i. The resulting state-space model for DSO i is given by:

ẋi
d(t) = Ai

dxi
d(t) + Bi

d

([
Pi

IMP(t) + Si
IMP(t)

]>1nt − Pi
BD(t)− Si

BD(t)−Ψi(δi(t))
)

,

where xi
d(t) = [δi

1, . . . , δi
ni

d
, ωi

1, . . . , ωi
ni

d
]> is the state vector, and Ai

d and Bi
d are system matrices.

The parameter Ψi(δi(t)) ∈ Rni
d and its element for bus l are defined as ψi

l = ∑j∈Dn,i
l

bi
l j sin(δi

l(t)− δi
j(t)).

The total building demand Pi
BD(t) and flexibility Si

BD(t) at node l can be determined as follows:

Pi
BD(t) = [Pi

BD1
, . . . , Pi

BD
ni

d

]>

= Πi(Pstor(t) + Phvac(t) + Pmisc)

Si
BD(t) = [Si

BD1
, . . . , Si

BD
ni

d

]>

= Πi(Sstor(t) + Shvac(t))

,

where incidence matrix Πi ∈ Rni
d×nb relates the buses of DSO i to the nb buildings in the network.

Each building is assumed to be connected to exactly one DSO bus, and thus, ∑i∈D
[
(Πi)>1ni

d

]
= 1nb .

Pstor(t), Phvac(t), Pmisc(t) ∈ Rnb are the power storage, HVAC power demand, and uncontrollable
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miscellaneous power consumption of all buildings, respectively. Finally, Sstor(t), Shvac(t) ∈ Rnb

represent the total storage and the total building HVAC flexibility, respectively.

2.3. Building and Storage Model Dynamics

2.3.1. Building Thermal Comfort Model

The framework developed in this paper explicitly couples building decision variables to the power
grid. Traditional resistance and capacitor (RC) networks are widely used to model thermodynamics
of building envelopes [15]. Both highly detailed models with variables for many zones, e.g., [26–28],
and low order models with a single lumped zone, e.g., [17,18], have been proposed in the literature.
As the envisioned purpose of the framework is to integrate large clusters of buildings into the grid,
a low order thermal building model is most appropriate, considering the resulting computational
complexity. Using the 3R-2C circuits model for each building adopted from [17], consider the thermal
dynamics:

Ṫwall(t) =
Tamb(t)− Twall(t)

CwallR2
+

Tzone(t)− Twall(t)
CwallR1

+
Q̇sol(t)
Cwall

,

Ṫzone(t) =
Twall(t)− Tzone(t)

CzoneR1
+

Tamb(t)− Tzone(t)
CzoneRwin

+
Q̇int(t)− Q̇hvac(t)

Czone
,

(5)

where Twall(t) and Tzone(t) are the wall and zone (interior room) temperatures, respectively,
and Tamb(t) is the ambient temperature. The resistance of the external walls, internal walls,
and windows are given by the resistance parameters R1, R2 and Rwin. The lumped thermal capacities
of the building exterior walls and the zone are denoted by Cwall and Czone, respectively. Moreover,
Q̇sol(t) represents the sum of the solar radiation absorbed on the external walls, and Q̇int(t) is the
total heat gain from internal sources. The room temperature is controlled by the cooling load Q̇hvac(t),
which is proportional to the HVAC power consumption via Q̇hvac(t) = µhvac(Phvac(t) + Shvac(t)).
The thermal dynamics in Equation (5) for an individual building are written as the following
state-space model:

ẋl
b(t) = Al

bxl
b(t) + Bl(Pl

hvac(t) + Sl
hvac(t)) + B̄lw̄l

b(t), (6)

where xl
b(t) = [Tl

wall Tl
zone]

> is the state vector and w̄l
b = [Tl

amb Q̇l
sol Q̇l

int]
> is an uncertain vector.

Please note that for the buildings model, we consider w̄l
b to be equivalent to the forecast value of the

uncertain parameters. For the explicit derivation of system matrices Al
b, Bl , and B̄l , we refer the reader

to [21]. Since we aim to describe the dynamics of clusters of buildings, let nb be the total number of
buildings, and denote by B = {1, . . . , nb} the full set of buildings connected to the grid. In the absence
of communication between buildings, the dynamics of all buildings combined are described by the
following state-space model with block diagonal system matrices (full matrix definitions are omitted
for brevity):

ẋb(t) = Abxb(t) + B(Phvac(t) + Shvac(t)) + B̄w̄b(t) . (7)

2.3.2. Electrical Energy Storage Model

Define xj
s(t) ∈ R to be the energy state variable (state of charge, or SoC) and Pj

stor(t), Sj
stor(t) ∈ R

the normal and flexibility power input rate variable, respectively, for a dedicated electrical storage unit
j of building j ∈ B. Consider now the discrete-time dynamical model of storage unit j as:

xj
s(k + 1) = ξxj

s(k) + hη(Pj
stor(k) + Sj

stor(k)) , (8)

where xj
s(0) = xj,0

s is the given initial SoC, h is the discretization step size, and ξ and η are efficiency
coefficients of the storage unit. Although the current equation models energy loss proportionally,
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higher order equations for losses can be modeled as well. Denote by Ξ and Ω the diagonal matrices
composed of ξ l and ηl for all buildings l ∈ B, respectively.

Remark 2. The proposed models for the TSO, DSO, and building thermal comfort dynamics in Equations (1),
(4), and (6), respectively, are continuous-time. To formulate a discrete optimal control problem in the MPC
paradigm, the dynamics are discretized using the first-order backward Euler implicit method proposed in [29].
The discretized dynamics in the three distinct model areas are then denoted by the following functions:

xt(k + 1) = ft
(

xt(k), PGR(k), R(k), PLD(k), SLD(k), Pw(k)
)
,

xi
d(k + 1) = f i

d
(

xi
d(k), Pi

IMP(k), Si
IMP(k), Pi

BD(k), Si
BD(k)

)
, (9)

xb(k + 1) = fb
(

xb(k), Phvac(k), Shvac(k)
)
,

for all time steps k = 1, 2, . . . , Nsim, such that Nsim is the finite-time step of the simulation study.

3. Ancillary Service Deployment

In this section, we first describe common practice in the TSO network to deal with highly
fluctuating wind-power integration, the so-called reserve scheduling service, and then present a
novel formulation for building demand flexibility to be deployed as an ancillary service to handle
uncertain wind power in the energy network.

3.1. Reserve Scheduling Formulation

Wind-power generation suffers from uncertainty and limited predictability [30]. Consider P f
w ∈

Rnw to be the forecast value of the wind power for every wind farm in the set F = {1, . . . , nw},
and denote the error between forecast and actual power by ∆Pw = Pw − P f

w. When ∆Pw 6= 0, the power
balance in the TSO network between production and demand is not satisfied anymore. To restore
power balance, the common practice is to deploy so-called reserve power such that by adjusting the
generator power output, forecast errors are compensated with altered generation (denoted by R ∈ Rng ).
Increasing the generator output is called up-spinning reserve (Rus ≥ 0), and decreasing the output is
down-spinning reserve (Rds ≥ 0). To schedule the reserve power, one can define the reserve power
as follows:

− ∑
i∈G

Ri(k) = ∑
m∈F

∆Pwm(k), (10)

and consider −Rds(k) ≤ R(k) ≤ Rus(k), to determine Rds(k) and Rus(k) at each time step k. Please
note that the new scheduled power should also satisfy the generation limits, i.e., Pmin

GR ≤ PGR(k) +
R(k) ≤ Pmax

GR , where Pmin
GR and Pmax

GR are the minimum and maximum limits of power generation units,
respectively.

3.2. Building Flexibility Formulation

Define S ∈ Rnb to be the building flexibility and consider the capability to increase energy
consumption as increased-demand flexibility (Sid ≥ 0) and the capability to decrease energy consumption
as decreased-demand flexibility (Sdd ≥ 0). If instead of generator reserve power, demand flexibility is
used to mitigate the wind-power forecast error, one can schedule the flexibility as follows:

∑
l∈B

Sl(k) = ∑
m∈F

∆Pwm(k), (11)

and consider −Sdd(k) ≤ S(k) ≤ Sid(k), to determine Sdd(k) and Sid(k) at each time step k.
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Consider now the flexibility contribution of individual buildings in the network via two sources:
(1) building storage systems, and (2) building HVAC loads, which yields the following bounds on the
building flexibility at time step k:

− Sdd
stor(k)− Sdd

hvac(k) ≤ S(k) ≤ Sid
stor(k) + Sid

hvac(k) , (12)

where Sid
stor, Sid

hvac, Sdd
stor, and Sdd

hvac represent the increased- and decreased-demand flexibility using the
storage unit and HVAC load, respectively. The available storage flexibility of building l ∈ B can be
formulated as:

Sid,l
stor(k) = min

{
Pmax

stor − Pl
stor(k) ,

xmax
s − ξxl

s(k)
hη

− Pl
stor(k)

}
,

Sdd,l
stor (k) = max

{
Pmin

stor − Pl
stor(k) ,

xmin
s − ξxl

s(k)
hη

− Pl
stor(k)

}
,

(13)

where h is the discretization step size, and xmin
s , xmax

s , Pmin
stor , and Pmax

stor are the SoC limits and storage
power limits, respectively. Storage flexibility is defined as the margin between the current storage
power Pstor(k) and the upper and lower bounds, respectively, constrained by the SoC limits on xs(k).
As indicated in Figure 1, increased-demand storage flexibility (Sid

stor) is the maximum amount of power
with which Pstor(k) can be increased for one time step width h, such that both the maximum storage
power injection constraint (Figure 1a) and the storage energy limit (Figure 1b) are still satisfied.

0 1 2 3
0
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0.6

0.8

1

1.2

f +stor(k)

xmax
s

xs(k)

xs(k + h)
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x s
(n

or
m

al
iz

ed
)

(a) Pmax
stor as limiting term
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1

1.2

f +stor(k)

xmax
s

xs(k)

xs(k + h)

Time steps h

(b) xmax
s as limiting term

Figure 1. Visualization of positive storage flexibility.

A similar expression is derived for the available HVAC flexibility of building l ∈ B, such that
both HVAC power limits and building comfort levels are still satisfied:

Sid,l
hvac(k) = min

{
Pmax

hvac − Pl
hvac(k) , Pid,l

hvac(k)− Pl
hvac(k)

}
,

Sdd,l
hvac(k) = max

{
Pmin

hvac − Pl
hvac(k) , Pdd,l

hvac(k)− Pl
hvac(k)

}
,

(14)

where Pmin
hvac, Pmax

hvac are the minimum and maximum limits of HVAC power usage, respectively. Pdd,l
hvac(k)

and Pid,l
hvac(k) are the minimum and maximum HVAC power such that the comfort level constraints are

still satisfied:

Pdd
hvac(k) =

Twall − Tzone

R1µhvac
+

Tamb − Tzone

Rwinµhvac
+

Q̇int

µhvac
− Czone

hµhvac

[
min

{
Tmax

zone(k) , Tmax
zone(k + h)

}
− Tzone(k)

]
,

Pid
hvac(k) =

Twall − Tzone

R1µhvac
+

Tamb − Tzone

Rwinµhvac
+

Q̇int

µhvac
− Czone

hµhvac

[
max

{
Tmin

zone(k) , Tmin
zone(k + h)

}
− Tzone(k)

]
,
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where Tmax
zone(k) and Tmin

zone(k) represent the thermal comfort level limits at time k. Positive HVAC
flexibility is visualized in Figure 2, showing that the limiting term is either the HVAC power (Figure 2a)
or the thermal comfort level (Figure 2b).

0 1 2 3

f +hvac(k)

Tmin
zone

Tzone(k)

Tzone(k + h)

Time steps h

T z
on

e(
k)

(a) Pmax
hvac as limiting term

0 1 2 3

f +hvac(k)

Tmin
zone

Tzone(k)
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Figure 2. Visualization of positive HVAC flexibility.

3.3. Reserve Scheduling Together with Building Flexibility

Including both reserve and flexibility in the grid power balance yields

∑
i∈G

(PGRi + Ri) + ∑
m∈F

(P f
wm + ∆Pwm) = ∑

l∈B
(PBDl + Sl) , (15)

where the sum of reserve and flexibility mitigates the total wind-power forecast error:

∑
l∈B

Sl − ∑
i∈G

Ri = ∑
m∈F

∆Pwm . (16)

Based on Equation (12), the following constraint encodes that the scheduled reserve and flexibility
is always sufficient to compensate the wind-power error:

− ∑
i∈G

Rus
i − ∑

l∈B
Sdd

l ≤ ∑
m∈F

∆Pwm ≤ ∑
i∈G

Rds
i + ∑

l∈B
Sid

l . (17)

4. Stochastic MPC Formulation

Model predictive control (MPC) is a flexible paradigm that defines receding-horizon-based
optimization problems, enabling the specification of time-domain objectives together with the ability
to explicitly enforce constraints on system dynamics. Two extensions to MPC exist when the
system dynamics and/or constraints are subject to uncertainties, namely robust and stochastic MPC.
Robust MPC is able to handle the uncertainties using the so-called worst-case approach while still
ensuring that the state constraints are met. Alternatively, stochastic MPC has attractive features,
due to its ability to handle uncertain systems in a less conservative way. Stochastic MPC considers the
stochastic characteristics of the uncertainties and treats system constraints in a probabilistic manner,
i.e., using chance constraints. In this section, we formulate a receding horizon stochastic optimization
problem to compute an optimal decisions sequence that minimizes a given objective function, subject to
the uncertain BtG model dynamics and chance constraints.

Given the set of prediction time stepsNh = {0, 1, ..., Nh} such that Nh is the length of the prediction
horizon, consider the concatenated vector of control decision variables to be

Uk = [PGR(`|k), Phvac(`|k), Pstor(`|k), Rus(`|k), Rds(`|k), Sid
hvac(`|k), Sdd

hvac(`|k), Sid
stor(`|k), Sdd

stor(`|k)]`∈Nh
.

The objective function consists of two parts. The first part penalizes TSO and DSO grid frequency
deviations, while part two accounts for the operating costs, e.g., power generation, etc. The initial
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grid state variables are given by xk := [xt(0|k), [xi
d(0|k)]∀i∈D ]

>, the vector of uncertainty is Pwk :=
[Pw(`|k)`∈Nh

], and Qt, {Qi
d}i∈D , QGR, and Qhvac are diagonal cost matrices associated with the TSO

and DSO states, generation, and HVAC power usage respectively. Finally, qid
S , qdd

S , qus
R , and qds

R are the
cost vectors related to increased- and decreased-demand, up- and down-spinning reserves, respectively.
Using these definitions, the cost function can be formulated as follows:

J̃(xk,Uk,Pwk ) = ∑
`∈Nh

(
x>t (`|k)Qtxt(`|k) +

nd

∑
i=1

(
xi>

d (`|k)Qi
dxi

d(`|k)
)
+ P>GR(`|k)QGRPGR(`|k)

+ P>hvac(`|k)QhvacPhvac(`|k) + qid>
S
(
Sid

stor(`|k) + Sid
hvac(`|k)

)
+ qdd>

S
(
Sdd

stor(`|k) + Sdd
hvac(`|k)

)
+ qus>

R Rus(`|k) + qds>
R Rds(`|k)

)
.

(18)

The cost function in Equation (18) is a random variable, since it depends on the uncertain TSO and
DSO state variables. Therefore, we consider J(xk,Uk) := E[ J̃(xk,Uk,Pwk )] to obtain a deterministic cost
function, which can be approximated empirically following the approach in [31] by averaging the value
of its argument for some number S0 of different realizations of the uncertain variable, which plays a
tuning parameter role, i.e., J(xk,Uk) := 1

S0
∑S0

s=1 E[ J̃(xk,Uk,Ps
wk
)].

The discretized dynamics in Equation (9) are non-deterministic, due to the uncertainty in the
wind, reserve, and flexibility power. To obtain a set of deterministic dynamics, consider now the
special case when Pw = P f

w, and denote the corresponding TSO, DSO, building, and storage dynamics
by x f

t , x f ,i
d , x f

b , x f
s . In this case, ∆Pw = 0, which means that the optimal reserve and flexibility

contributions as determined in Equation (16) are both zero. Using this notation, we are in a position to
formulate a finite-horizon stochastic control problem for each sampling time k using the following
optimization program:

minimize
Uk

J(xk,Uk) subject to, ∀` ∈ Nh :

• TSO deterministic frequency model dynamics:

x f
t (`+ 1|k) = ft

(
x f

t (`|k), PGR(`|k), PLD(`|k), P f
w(`|k)

)
. (19a)

• TSO generation, ramping, line, and balance constraints:

Pmin
GR ≤ PGR(`|k) ≤ Pmax

GR ,

Pdown
GR ≤ PGR(`+ 1|k)− PGR(`|k) ≤ Pup

GR,

Lmin ≤ L̃TSO[x f
t (`+ 1|k)

]
≤ Lmax,[

ΓPGR(`|k) + P f
w(`|k)− PBL(`|k)

]>
1nt = 0,

(19b)

where Pdown
GR and Pup

GR are ramping limits of power generation units, L̃TSO is defined in Remark 1,
and Lmin and Lmax are the TSO power flow limits.

• DSO deterministic frequency dynamics, ∀i ∈ D:

x f ,i
d (`+ 1|k) = f i

d
(
x f ,i

d (`|k), Pi
IMP(`|k), Pi

BD(`|k)
)

. (19c)

• DSO power line and balance constraints, ∀i ∈ D:

Li,min ≤ L̃DSO,i[x f ,i
d (`+ 1|k)

]
≤ Li,max,[

Pi
IMP(`|k)>1nt − Pi

BD(`|k)
]>

1ni
d
= 0,

(19d)
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where L̃DSO,i is defined in Remark 1, and Li,min and Li,max are the DSO power flow limits.
• Buildings deterministic thermal comfort dynamics:

x f
b (`+ 1|k) = fb(x f

b (`|k), Phvac(`|k)) . (19e)

• Buildings thermal comfort, power balance, and HVAC usage constraints:

xmin
b ≤ x f

b (`+ 1|k) ≤ xmax
b ,

∑nd
i=1 Pi

BD(`|k) = Phvac(`|k) + Pstor(`|k) + Pmisc(`|k),
Pmin

hvac ≤ Phvac(`|k) ≤ Pmax
hvac,

(19f)

where xmin
b and xmax

b are the minimum and maximum bounds for the desired thermal comfort
of buildings.

• Buildings electrical storage unit dynamics:

x f
s (`+ 1|k) = Ξx f

s (`|k) + Ω(Pstor(`|k)) , (19g)

• Buildings storage capacity and power usage constraints:

xmin
s ≤ x f

s (`+ 1|k) ≤ xmax
s ,

Pmin
stor ≤ Pstor(`|k) ≤ Pmax

stor ,
(19h)

• Probabilistic constraint:

P
{
Pwk ∈ W

∣∣∣ Lmin ≤ L̃TSO[xt(`+ 1|k)
]
≤ Lmax,

Li,min ≤ L̃DSO,i[xi
d(`+ 1|k)

]
≤ Li,max,

Pmin
GR ≤ PGR(`|k) + R(`|k) ≤ Pmax

GR ,[
Si

IMP(`|k)>1nt − Si
BD(`|k)

]>
1ni

d
= 0,

∑nd
i=1 Si

BD(`|k) = Shvac(`|k) + Sstor(`|k),
Pmin

hvac ≤ Phvac(`|k) + Shvac(`|k) ≤ Pmax
hvac,

Pmin
stor ≤ Pstor(`|k) + Sstor(`|k) ≤ Pmax

stor ,

− a(`|k) ≤ b(`|k) ≤ c(`|k) ,

∀i ∈ D and ∀` ∈ Nh

}
≥ 1− ε ,

(19i)

where xt(·) and xi
d(·) are given by Equation (9), ε ∈ (0, 1) is the level of admissible constraint

violation, a = ∑i∈G Rus(`|k) + ∑l∈B(S
dd,l
hvac(`|k) + Sdd,l

stor (`|k)), b = ∑m∈F (Pw(`|k) − P f
w(`|k)),

and c = ∑i∈G Rds(`|k) + ∑l∈B(S
id,l
hvac(`|k) + Sid,l

stor(`|k)), such that the formulation for Sid
hvac(`|k),

Sdd
hvac(`|k), Sid

stor(`|k), and Sdd
stor(`|k) are given in Section 3.2.

The constraint Equation (19i) is a chance constraint, which ensures that the feasibility probability
for the constraint is above the specified level. Using the proposed chance constraint Equation (19i),
stochastic MPC offers an alternative approach to robust MPC. Since stochastic MPC directly
incorporates the trade-off between constraint feasibility and control performance, the corresponding
solutions are generally less conservative.

Please note that Equations (19a)–(19h) are all based on the deterministic BtG dynamics for the
special case when no ancillary services are required, i.e., ∆Pw, R, SLD, SIMP, SBD, Shvac, and Sstor are all
zero. On the contrary, the probabilistic constraint Equation (19i) depends on the non-deterministic
dynamics. Hence, the optimization problem in Equation (19) is a finite-horizon, chance-constrained
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quadratic program, whose stages are coupled by the dynamics of the TSO, DSO, buildings thermal
comfort, and storage systems at each sampling time k. We note that the proposed optimization
program in Equation (19) is in general a non-convex problem which is hard to solve. The feasible
set of Equation (19) is non-convex and hard to determine explicitly in the presence of chance
constraints Equation (19i). In the following section, we will develop a tractable framework to obtain a
probabilistically feasible solution

5. Tractable Robust MPC Reformulation

Using a more compact notation, the chance constraints Equation (19i) can be written as

P{Pwk ∈ W | g(xk,Uk,Pwk ) ≤ 0} ≥ 1− ε . (20)

To this end, we approximate the proposed probabilistic constraints in Equation (20) using the following
robust reformulation:

g(xk,Uk,Pwk ) ≤ 0 , ∀Pwk ∈W , (21)

where W is a bounded uncertainty set compared to W which is an unbounded and unknown
uncertainty set in Equation (20). In the perspective of power systems, the proposed tractable
reformulation Equation (21) translates the unbounded set of wind-power scenariosW to a bounded
set W which contains the more probable scenarios of wind power with a high level of confidence.
Please note that the proposed constraint Equation (21) is a robust constraint, since it should be
satisfied for all Pwk ∈ W. Obviously, for any feasible solution for Equation (21), Pwk ∈ W implies
g(xk,Uk,Pwk ) ≤ 0, Pwk ∈ W . Therefore, by choosing W that covers at least a (1 − ε) content of
Pwk , i.e., W satisfies P{Pwk ∈ W} ≥ 1 − ε, any feasible solution for Equation (21) must satisfy
P{Pwk ∈ W | g(xk,Uk,Pwk ) ≤ 0} ≥ P{Pwk ∈ W} ≥ 1 − ε, implying that it is also feasible for
Equation (20) (see [32] for more detailed descriptions). In other words,

Lemma 1. Any feasible solution for Equation (21) using a (1− ε)-content set W is a feasible solution for the
probabilistic constraint in Equation (20) with probability 1− ε.

Proof. The proof is straightforward, and we omit it for the sake of brevity.

Let us now introduce W ⊆ Rnw=1 as a bounded set. We assume for simplicity that W is an
axis-aligned hyper-rectangular set. Please note that this is not a restrictive assumption and any convex
set, e.g., ellipsoids and polytopes, could have been chosen instead as described in [31]. We can define
W := [−ω, ω] as an interval, where the vector ω ∈ Rnw defines the hyper-rectangle bounds.

Consider now the following optimization problem that aims to determine the set W with
minimal volume:  min

ω∈Rnw
‖ω‖1

s.t. Pl
wk
∈ [−ω, ω] , ∀ l = 1, . . . , S

, (22)

where S is a finite number of i.i.d samples Pl
wk
∈ W needed to be available from either a known

distributionW or through historical observations. If we denote by W = [−ω̃, ω̃] the optimal solution
of Equation (22), then the following proposition provides an explicit relation between the number of
required samples S and the (1− ε)-content set W.

Proposition 1. Fix ε ∈ (0, 1), β ∈ (0, 1), determine S ≥
⌈ 2

ε (nw + ln 1
β )
⌉
, and solve Equation (22) to obtain

its optimal solution [−ω̃, ω̃] = W. Then, with probability of at least 1− β,

P
{
Pwk ∈ W : Pwk /∈ [−ω̃, ω̃] = W

}
≤ ε . (23)
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Proof. The proof is based on the results in [33] by noting that the proposed optimization problem
Equation (22) is a convex program with the number of decision variables equivalent to the number of
uncertain variables nw = 1. We therefore omit the proof for the sake of brevity.

Using the proposed robust reformulation in Equation (21), one can obtain a tractable formulation
similar to (Proposition 1, [34]). The obtained solution of the optimization program in Equation (19),
where Equation (19i) is replaced with Equation (21), is the optimal input sequence U∗k . Following
the MPC paradigm, only the first element of the optimal control input is implemented at time k,
and we proceed based on the receding horizon principle. This means that at every time step k,
the robust reformulation of Equation (19) is solved using the current measurement of the state variables
{xt(k), xd(k), xb(k), xs(k)}.

6. Numerical Case Study

To demonstrate the grid regulative capacity of (a) reserve scheduling and (b) building HVAC and
storage flexibility on the BtG system under wind-power penetration, we consider the following three
cases in the simulation study: (1) BtG system with only reserve power enabled, (2) BtG system with
only flexibility power enabled, (3) BtG system with both reserve and flexibility power enabled. Please
note that we consider the same cost coefficients for both reserve and flexibility deployments in the cost
function Equation (18). Throughout the simulation horizon, the wind-power penetration is around
10–15% of the total electricity generation in all cases.

6.1. Simulation Setup

Consider a network of 1 TSO with 3 generators (GRs), 2 DSOs, 13 buildings, and 1 wind farm
(WF), as visualized in Figure 3. The case studies are simulated for Nsim = 24 hours with the prediction
horizon of an hour and time resolution h = 5 minutes. Thus, the length of the prediction horizon
is Nh = 60

5 = 12 steps. To generate the number of required scenarios of wind power, we use the
Markov chain model in [30]. Following Proposition 1, we choose ε = 0.05, β = 10−4, and S = 1328 ≥⌈ 2

ε (2× 12 + ln 1
β )
⌉
, and then solve Equation (22) to obtain the bounded set W at each sampling time k.

The associated cost parameters are Qt = Qd = 1000 rad−2, power generation and consumption are
valued at QGR = Qhvac = 0.1 MW−2, and reserve and flexibility scheduling at qR = qS = 1000 MW−1.
Please note that to have a fair comparison, we assumed the same cost coefficients for both reserve
and flexibility. Since our simulation study considers large-scale buildings, the limits for each storage
unit are set equivalent to four Tesla Model S batteries [35], i.e., Pmin

stor = −2 MW, Pmax
stor = 2 MW,

xmin
s = 2 kW h, and xmax

s = 400 kW h. Simulations were implemented in MATLAB, with Yalmip as
interface [36] and Gurobi as solver [37]. Building parameters and miscellaneous (uncontrollable) load
profiles for the large-scale, commercial buildings were adopted from [17]. Grid parameters (line length,
cable type, line susceptance, etc.) were obtained from the MatPower IEEE 5-bus power system [38],
with some parameters (e.g., power line limits) scaled appropriately for the current simulation studies.
For further details on the building and grid parameters, we refer the reader to the sources above.
We also carried out Monte Carlo simulations with the system under optimal control input simulated
for 10,000 different wind-power scenarios. We obtain a-posteriori the violation probability (empirical
violation level), by means of counting the number of trajectories that violate any of the constraints,
to check if the theoretical maximum violation level is indeed satisfied.
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Figure 3. Network topology of the MPC problem, indicating the grid structure, generators (GR)
buildings (BLD) and wind farm (WF).

6.2. Simulation Results

The power balance in the TSO network for all cases is presented in Figure 4, showing a reduced
production for Case 2 and 3, compared to Case 1. In particular, Case 2 yields a total reduction in
conventional generation of 2.7% compared to Case 1, whereas for Case 3, this reduction is 12.8%.
The solid black line shows the forecast wind power, and the dark green bars show the actual wind
power. As shown in both Figures 4 and 6, between 3:00–11:00 and 15:00–17:00, the wind-power error is
negative, ∆Pw ≤ 0, and from 12:00–14:00 and 18:00–24:00, the error is positive, ∆Pw ≥ 0. To restore the
power balance, when ∆Pw ≤ 0, Case 2 employs the decreased-demand flexibility and on the contrary,
Case 1 uses the up-spinning reserve power to reduce output power dispatch. Similarly, when ∆Pw ≥ 0,
Case 2 employs the increased-demand flexibility and on the contrary, Case 1 uses the down-spinning
reserve power to reduce output power dispatch.

Figure 5 depicts the frequency deviations in the TSO and DSO networks for Case 3. Frequency
deviations for all the cases are kept well below allowable limits. Enabling building-side flexibility
results in a reduction of 5.3% in cumulative squared frequency deviation for the total network, and a
reduction of 32.5% in the DSO network only.

The wind-power error together with the reserve and flexibility dispatch for Case 3 is presented in
Figure 6. As reserve and flexibility are valued at the same cost in the objective function, the distribution
between the two indicates that both mechanisms are cooperating well to meet the power balance.
The total flexibility dispatch accounts for 44.37% of the total compensation for the wind-power error
over the 24h simulation time. It is shown that in the case of a positive wind-power error, flexibility
dispatch is promoted over reserve, while for a negative wind-power error, the opposite is observed.
Finally, Figure 6 also shows that the wind-power error is perfectly compensated throughout the full
day, by the sum of flexibility and reserve deployment.

The reserve and flexibility scheduling is compared to the actual dispatch in more detail in
Figure 7. In line with Figure 6, up-spinning reserve is promoted over decreased-demand flexibility,
while increased-demand is favored over down-spinning reserve. Although total power demand
differs by less than 10% between all cases, this motivates why the power dispatch of the cases is
of different shape, as observed in Figure 4. As shown in Figure 6, it is important to note that the
reserve and flexibility scheduling capacity is always significantly higher than the actual reserve or
flexibility dispatch (i.e., the portion of the capacity that is deployed in the operational decision-making).
This suggests that the current reserve and flexibility scheduling capacity is also sufficient for dealing
with higher wind-power penetration levels than the current 10%.
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Figure 4. Power balance in the TSO network, showing the wind-power forecast (lower solid line),
actual wind power (purple bars), and reserve and flexibility deployment in bright red and yellow,
respectively. Other colored bars represent production by conventional generators.
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Figure 5. Case 3—Frequency deviations in the TSO and DSO networks.
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Energies 2020, 13, 6532 16 of 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hours)

-0.2

0

0.2

0.4

A
ve

ra
ge

 p
ow

er
 (

M
W

) Reserve scheduling and dispatch (Case 3) Reserve scheduling
Reserve dispatch up
Reserve dispatch down

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hours)

-0.5

0

0.5

1

1.5 Flexibility scheduling and dispatch (Case 3) Flexibility scheduling
Flexibility dispatch up
Flexibility dispatch down

A
ve

ra
ge

 p
ow

er
 (M

W
)

Figure 7. Case 3—Actual reserve (per generator) and flexibility (per building cluster connected to the
same DSO) dispatch per hour compared to the reserve and flexibility scheduled.

The results of our Monte Carlo simulation to determine the empirical constraint violation level
are presented in Figure 8 for all 3 cases along with a case in which no reserve or flexibility is used.
As the majority of violations are observed during peak load hours, only this portion of the simulation
horizon is presented. For the case with no reserve or flexibility, empirical violation levels are extremely
high, as any deviation of the wind power from the forecast trajectory almost exclusively results in
violation of the power line limits. For Case 1 and 3, maximum empirical violation levels are around
0.1%, whereas for Case 2, no violations were observed in any of the 10,000 iterations. In all three cases,
the empirical violation level is well below the theoretical limit of ε = 0.05.

Figure 8. Monte Carlo empirical violation levels (note the double break in the Y-axis and the limited
time span of the plot).
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7. Conclusions

In this paper, we have presented two new developments for the BtG integration framework.
First, we extended the existing models by introducing uncertain wind-power generation and by
explicitly formulating the interactions between TSO, DSOs, and buildings. Second, we developed
a unified BtG framework to handle uncertain generation, by integrating demand-side flexibility
provided by individual buildings into the traditional process of reserve scheduling. We provided
explicit expressions to determine the available amount of building demand-side flexibility from HVAC
and electrical storage units. Using the unified BtG model, we formulated a finite-horizon stochastic
control problem and provided a tractable robust reformulation with probabilistic feasibility guarantees.
As the main outcome of our proposed BtG framework, we conclude that the demand-side flexibility can
substitute the traditional reserve scheduling services in power systems in the presence of wind-power
generation, without losing stability properties of the power grid and violating the buildings thermal
comfort of occupants.

At the same time, the proposed framework is still rather idealistic, and relies on multiple major
assumptions. As a final note, we discuss some of these assumptions, and provide possible directions
for future research:

• First of all, we did not consider the impact of imperfect communication between the TSO, DSOs,
and buildings, and other sources of uncertainty than the wind power, such as demand uncertainty,
were left out of scope. Hence, in a more sophisticated BtG integration framework, multiple sources
of uncertainty should be incorporated.

• Second, the BtG framework in the current work is formulated as a centralized MPC framework.
Although the current centralized implementation runs in reasonable time for hundreds of
buildings, we believe that it is worth exploring decentralized control frameworks, e.g., [39],
in order to reduce the computational complexity of the problem.

• Finally, part of our current work focuses on integrating the psychological impact of end-users
for participating in the ancillary service market, by providing demand-side flexibility to the
grid. We are interested in constructing models to simulate the willingness of end-users to
participate in the ancillary service market, in order to study how different stimuli can influence
the psychological behavior of consumers.
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