273 research outputs found

    The real-time earthquake monitoring system in Italy

    Get PDF
    As regards the transmission vectors – one of the most critical points of a seismic network – we adopted a mixed strategy: half of the stations are connected through satellite links, and half through cable links. The use of satellite transmission presents several advantages: the link is very robust, the constraints for site selection are weak, and the cost is lower than telephone lines. As regards the terrestrial cable links, we use INGV digitizers (named GAIA), protected IP connections of the Italian Public Administration Network (RUPA): site selection is more delicate, and a compromise must be found between low environmental noise and availability of network infrastructures

    The Time-Course of Changes in Muscle Mass, Architecture and Power During 6 Weeks of Plyometric Training

    Get PDF
    Purpose: To investigate the time-course of changes in knee-extensors muscle mass, architecture and function in response to plyometric training (PLT) performed on a novel training device, the Tramp-Trainer. This machine consists in a trampoline connected to an inclined sledge which allows the performance of repeated jumps while the subject is sitting on a chair. Methods: Eight healthy males (173.6 \ub1 4.7 cm, 69.7 \ub1 13.5 kg, 25.3 \ub1 4.6 years) underwent 6 weeks of bilateral PLT on the tramp-trainer machine. Training was performed three times per week (between 120 and 150 bounces per session). Knee-extensor maximum voluntary torque (MVT) and power, quadriceps femoris (QF) volume (VOL), cross-sectional area from the 20% to the 60% of femur length and CSAmean, together with vastus lateralis (VL) architecture (fascicle length, Lf, and pennation angle, PA) were assessed after 2, 4, and 6 weeks of PLT. Results: All results are presented as changes versus baseline values. MVT increased by 17.8% (week 2, p < 0.001) and 22.2% (week 4, p < 0.01), respectively, and declined to 13.3% (p < 0.05) at week 6 of PLT. Power increased by 18.2% (week 4, p < 0.05) and 19.7% (week 6, p < 0.05). QF VOL increased by 4.7% (week 4, p < 0.05) and 5.8% (week 6, p < 0.01); VL VOL increased by 5.2%, (p < 0.05), 8.2%, (p < 0.01), and 9.6% (p < 0.05) at weeks 2, 4, and 6, respectively. An increase in Lf was detected already at wk 2 (2.2%, p < 0.05), with further increase at 4 and 6 weeks of PLT (4 and 4.4%, respectively, p < 0.01). PA increased by 5.8% (p < 0.05) at week 6. Significant positive correlations were found between CSAmean and Power (R2 = 0.46, p < 0.001) and between QF VOL and Power (R2 = 0.44, p < 0.024). Conclusions: PLT induced rapid increases in muscle volume, fascicle length, pennation angle, torque and power in healthy younger adults. Notably, changes in VL VOL and Lf were detectable already after 2 weeks, followed by increases in knee extensors VOL and power from week 4 of PLT. Since the increase in CSAmean and QF VOL cannot fully explain the increment in muscle power, it is likely that other factors (such as adaptations in neural drive or tendon mechanical properties) may have contributed to such fucntional changes

    Entropy, time irreversibility and Schroedinger equation in a primarily discrete space-time

    Full text link
    In this paper we show that the existence of a primarily discrete space-time may be a fruitful assumption from which we may develop a new approach of statistical thermodynamics in pre-relativistic conditions. The discreetness of space-time structure is determined by a condition that mimics the Heisenberg uncertainty relations and the motion in this space-time model is chosen as simple as possible. From these two assumptions we define a path-entropy that measures the number of closed paths associated with a given energy of the system preparation. This entropy has a dynamical character and depends on the time interval on which we count the paths. We show that it exists an like-equilibrium condition for which the path-entropy corresponds exactly to the usual thermodynamic entropy and, more generally, the usual statistical thermodynamics is reobtained. This result derived without using the Gibbs ensemble method shows that the standard thermodynamics is consistent with a motion that is time-irreversible at a microscopic level. From this change of paradigm it becomes easy to derive a H−theoremH-theorem. A comparison with the traditional Boltzmann approach is presented. We also show how our approach can be implemented in order to describe reversible processes. By considering a process defined simultaneously by initial and final conditions a well defined stochastic process is introduced and we are able to derive a Schroedinger equation, an example of time reversible equation.Comment: latex versio

    Review on Augmented Reality in Oral and Cranio-Maxillofacial Surgery: Toward 'Surgery-Specific' Head-Up Displays

    Get PDF
    In recent years, there has been an increasing interest towards the augmented reality as applied to the surgical field. We conducted a systematic review of literature classifying the augmented reality applications in oral and cranio-maxillofacial surgery (OCMS) in order to pave the way to future solutions that may ease the adoption of AR guidance in surgical practice. Publications containing the terms 'augmented reality' AND 'maxillofacial surgery', and the terms 'augmented reality' AND 'oral surgery' were searched in the PubMed database. Through the selected studies, we performed a preliminary breakdown according to general aspects, such as surgical subspecialty, year of publication and country of research; then, a more specific breakdown was provided according to technical features of AR-based devices, such as virtual data source, visualization processing mode, tracking mode, registration technique and AR display type. The systematic search identified 30 eligible publications. Most studies (14) were in orthognatic surgery, the minority (2) concerned traumatology, while 6 studies were in oncology and 8 in general OCMS. In 8 of 30 studies the AR systems were based on a head-mounted approach using smart glasses or headsets. In most of these cases (7), a video-see-through mode was implemented, while only 1 study described an optical-see-through mode. In the remaining 22 studies, the AR content was displayed on 2D displays (10), full-parallax 3D displays (6) and projectors (5). In 1 case the AR display type is not specified. AR applications are of increasing interest and adoption in oral and cranio-maxillofacial surgery, however, the quality of the AR experience represents the key requisite for a successful result. Widespread use of AR systems in the operating room may be encouraged by the availability of 'surgery-specific' head-mounted devices that should guarantee the accuracy required for surgical tasks and the optimal ergonomics

    Wearable augmented reality platform for aiding complex 3D trajectory tracing

    Get PDF
    Augmented reality (AR) Head-Mounted Displays (HMDs) are emerging as the most efficient output medium to support manual tasks performed under direct vision. Despite that, technological and human-factor limitations still hinder their routine use for aiding high-precision manual tasks in the peripersonal space. To overcome such limitations, in this work, we show the results of a user study aimed to validate qualitatively and quantitatively a recently developed AR platform specifically conceived for guiding complex 3D trajectory tracing tasks. The AR platform comprises a new-concept AR video see-through (VST) HMD and a dedicated software framework for the effective deployment of the AR application. In the experiments, the subjects were asked to perform 3D trajectory tracing tasks on 3D-printed replica of planar structures or more elaborated bony anatomies. The accuracy of the trajectories traced by the subjects was evaluated by using templates designed ad hoc to match the surface of the phantoms. The quantitative results suggest that the AR platform could be used to guide high-precision tasks: on average more than 94% of the traced trajectories stayed within an error margin lower than 1 mm. The results confirm that the proposed AR platform will boost the profitable adoption of AR HMDs to guide high precision manual tasks in the peripersonal space

    Key Ergonomics Requirements and Possible Mechanical Solutions for Augmented Reality Head-Mounted Displays in Surgery

    Get PDF
    In the context of a European project, we identified over 150 requirements for the development of an augmented reality (AR) head-mounted display (HMD) specifically tailored to support highly challenging manual surgical procedures. The requirements were established by surgeons from different specialties and by industrial players working in the surgical field who had strong commitments to the exploitation of this technology. Some of these requirements were specific to the project, while others can be seen as key requirements for the implementation of an efficient and reliable AR headset to be used to support manual activities in the peripersonal space. The aim of this work is to describe these ergonomic requirements that impact the mechanical design of the HMDs, the possible innovative solutions to these requirements, and how these solutions have been used to implement the AR headset in surgical navigation. We also report the results of a preliminary qualitative evaluation of the AR headset by three surgeons

    Validation of a patient-specific system for mandible-first bimaxillary surgery: ramus and implant positioning precision assessment and guide design comparison

    Get PDF
    In orthognathic surgery, the use of patient-specific osteosynthesis devices is a novel approach used to transfer the virtual surgical plan to the patient. The aim of this study is to analyse the quality of mandibular anatomy reproduction using a mandible-first mandibular-PSI guided procedure on 22 patients. Three different positioning guide designs were compared in terms of osteosynthesis plate positioning and mandibular anatomical outcome. PSIs and positioning guides were designed according to virtual surgical plan and 3D printed using biocompatible materials. A CBCT scan was performed 1 month after surgery and postoperative mandibular models were segmented for comparison against the surgical plan. A precision comparison was carried out among the three groups. Correlations between obtained rami and plates discrepancies and between planned rami displacements and obtained rami discrepancies were calculated. Intraoperatively, all PSIs were successfully applied. The procedure was found to be accurate in planned mandibular anatomy reproduction. Different guide designs did not differ in mandibular outcome precision. Plate positional discrepancies influenced the corresponding ramus position, mainly in roll angle and vertical translation. Ramus planned displacement was found to be a further potential source of inaccuracy, possibly due to osteosynthesis surface interference
    • …
    corecore