639 research outputs found

    A modular multilevel based high-voltage pulse generator for water disinfection applications

    Get PDF
    The role of irreversible electroporation using pulsed electric field (PEF) is to generate high voltage (HV) pulses with a predefined magnitude and duration. These HV pulses are applied to the treatment chamber until decontamination of the sample is completed. In this paper, a new topology for HV rectangular pulse generation for water disinfection applications is introduced. The proposed topology has four arms comprised of series connected half H-bridge modular multilevel converter cells. The rectangular pulse characteristics can be controlled via a software controller without any physical changes in power topology. The converter is capable of generating both bipolar and monopolar HV pulses with micro-second pulse durations at a high frequency rate with different characteristics. Hence, the proposed topology provides flexibility by software control, along with hardware modularity, scalability, and redundancy. Moreover, a cell's capacitance is relatively small which drastically reduces the converter footprint. The adopted charging and discharging process of the cell capacitors in this topology eliminate the need of any voltage measurements or complex control for cell-capacitors voltage balance. Consequently, continuity of converter operation is assured under cell malfunction. In this paper, analysis and cell-capacitor sizing of the proposed topology are detailed. Converter operation is verified using MATLAB/Simulink simulation and scaled experimentation

    Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles

    Get PDF
    This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved

    TSDF: A simple yet comprehensive, unified data storage and exchange format standard for digital biosensor data in health applications

    Full text link
    Digital sensors are increasingly being used to monitor the change over time of physiological processes in biological health and disease, often using wearable devices. This generates very large amounts of digital sensor data, for which, a consensus on a common storage, exchange and archival data format standard, has yet to be reached. To address this gap, we propose Time Series Data Format (TSDF): a unified, standardized format for storing all types of physiological sensor data, across diverse disease areas. We pose a series of format design criteria and review in detail current storage and exchange formats. When judged against these criteria, we find these current formats lacking, and propose a very simple, intuitive standard for both numerical sensor data and metadata, based on raw binary data and JSON-format text files, for sensor measurements/timestamps and metadata, respectively. By focusing on the common characteristics of diverse biosensor data, we define a set of necessary and sufficient metadata fields for storing, processing, exchanging, archiving and reliably interpreting, multi-channel biological time series data. Our aim is for this standardized format to increase the interpretability and exchangeability of data, thereby contributing to scientific reproducibility in studies where digital biosensor data forms a key evidence base

    Multichannel blind deconvolution using a generalized Gaussian source model

    Get PDF
    In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to un-known sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized gaussian source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a gradient descent algorithm incorporating the natural gradient extension. We also present a learning method for the unknown parameters of the generalized Gaussian source model. The performance of the proposed generalized Gaussian source model on a typical example is compared with those of other algorithm, viz the switching nonlinearity algorithm proposed by Lee et al. [8]. © Association for Scientific Research

    A Simplified 8 × 8 Transformation And Quantization Real-Time Ip-Block For MPEG-4 H.264/AVC Applications: A New Design Flow Approach

    Get PDF
    Current multimedia design processes suffer from the excessively large time spent on testing new IP-blocks with references based on large video encoders specifications (usually several thousands lines of code). The appropriate testing of a single IP-block may require the conversion of the overall encoder from software to hardware, which is difficult to complete in the short time required by the competition-driven reduced time-to-market demanded for the adoption of a new video coding standard. This paper presents a new design flow to accelerate the conformance testing of an IP-block using the H.264/AVC software reference model. An example block of the simplified 8 × 8 transformation and quantization, which is adopted in FRExt, is provided as a case study demonstrating the effectiveness of the approach

    Performance of self-compacting concrete cast in hot weather conditions

    Get PDF
    This work focused on how self-compacting concrete (SCC) performs in situ in hot weather conditions at an ambient temperature of about 35°C. Tests for the rheological properties and compressive and splitting tensile strength aspects were carried out. The results of SCC mix ingredients on the rheological and hardened features of SCC mix were studied. Variations in the amount of portland cement content (CC), water to cement ratio (w/c), coarse to fine aggregate ratio (C : F), chemical admixture ratio, and pozzolanic admixture ratio were considered. Optimum values were obtained for these ingredients, which satisfied the SCC rheological characteristics and gave a 28-day compressive strength of 42 MPa, and 52 MPa after 28 days and 56 days, respectively. These optimum constituent values were 450 kg·m–3 of cement, 0.45 water cementitious ratio, and a coarse to fine material ratio of 1 : 0.8, a high range superplasticizer of 2%, and a mineral admixture of either 5% silica fume or 25% fly ash as a substitute for a similar amount cement

    Automated Quality Control for Sensor Based Symptom Measurement Performed Outside the Lab

    Get PDF
    The use of wearable sensing technology for objective, non-invasive and remote clinimetric testing of symptoms has considerable potential. However, the accuracy achievable with such technology is highly reliant on separating the useful from irrelevant sensor data. Monitoring patient symptoms using digital sensors outside of controlled, clinical lab settings creates a variety of practical challenges, such as recording unexpected user behaviors. These behaviors often violate the assumptions of clinimetric testing protocols, where these protocols are designed to probe for specific symptoms. Such violations are frequent outside the lab and affect the accuracy of the subsequent data analysis and scientific conclusions. To address these problems, we report on a unified algorithmic framework for automated sensor data quality control, which can identify those parts of the sensor data that are sufficiently reliable for further analysis. Combining both parametric and nonparametric signal processing and machine learning techniques, we demonstrate that across 100 subjects and 300 clinimetric tests from three different types of behavioral clinimetric protocols, the system shows an average segmentation accuracy of around 90%. By extracting reliable sensor data, it is possible to strip the data of confounding factors in the environment that may threaten reproducibility and replicability

    Proučavanje relativističke tvorbe hadrona prema naprijed i unatrag u sudarima 3he i 4he s jezgrama u emulziji na energiji ubrzivača u dubni

    Get PDF
    The experimental results on 3He- and 4He-emulsion interactions accompanied by relativistic (shower) hadrons flying into the backward (θlab ≤ 90◦ ) hemisphere at 4.5 AGeV/c are presented and analyzed. The dependence of the probabilities of these interactions on the different target sizes, impact parameter and projectile spectator charges is studied. An investigation of average values and multiplicity distributions of these hadrons for the interactions with light and heavy emulsion nuclei has been carried out. In addition, the correlations between the multiplicities of different types of the emitted particles are studied. The data show that backward shower particles are a sensitive target parameter. The values of impact parameters can be used as good indicators for selecting events which occured with light or heavy emulsion nuclei. A comparison with the modified cascade model shows a good performance in describing the data produced in the region having less cascading (i.e. interactions with light nuclei). As for the interactions with heavy nuclei, the model overestimates the experimental data.Predstavljamo eksperimentalne rezultate i analize mjerenja međudjelovanja 3He i 4He u emulziji na 4.5 AGeV/c, u kojima se opažaju relativistički pljuskovi hadrona koji lete unatrag (θlab ≤ 90◦ ). Proučavamo ovisnost vjerojatnosti tih međudjelovanja o veličini jezgre mete, sudarnom parametru i naboju projektila-promatrača. Istražili smo prosječne vrijednosti i raspodjele višestrukosti hadrona za lake i teške jezgre u emulziji. Nadalje, proučavali smo korelacije višestrukosti različitih izlaznih čestica. Podaci pokazuju da su pljuskovi čestica unatrag osjetljiv parametar jezgri mete. Vrijednosti parametara mogu poslužiti kao dobar pokazatelj sudara s lakim odnosno teškim jezgrama. Usporedba s promijenjenim kaskadnim modelom pokazuje dobro slaganje s podacima u kojima je manje kaskada (tj. Manje sudara s lakim jezgrama). Rezultati tog modela za teške jezgre veći su od eksperimentalnih podataka
    corecore