4 research outputs found

    Asthma in the elderly: what we know and what we have yet to know

    Get PDF
    In the past, asthma was considered mainly as a childhood disease. However, asthma is an important cause of morbidity and mortality in the elderly nowadays. In addition, the burden of asthma is more significant in the elderly than in their younger counterparts, particularly with regard to mortality, hospitalization, medical costs or health-related quality of life. Nevertheless, asthma in the elderly is still been underdiagnosed and undertreated. Therefore, it is an imperative task to recognize our current challenges and to set future directions. This project aims to review the current literature and identify unmet needs in the fields of research and practice for asthma in the elderly. This will enable us to find new research directions, propose new therapeutic strategies, and ultimately improve outcomes for elderly people with asthma. There are data to suggest that asthma in older adults is phenotypically different from young patients, with potential impact on the diagnosis, assessment and management in this population. The diagnosis of AIE in older populations relies on the same clinical findings and diagnostic tests used in younger populations, but the interpretation of the clinical data is more difficult. The challenge today is to encourage new research in AIE but to use the existing knowledge we have to make the diagnosis of AIE, educate the patient, develop a therapeutic approach to control the disease, and ultimately provide a better quality of life to our elderly patients

    Silicon photonic switch-based optical equalization for mitigating pulsewidth distortion.

    No full text
    Optical transmitters typically require electrical pre-amplification using driver amplifiers to optimize the optical modulation depth. To enhance the detection sensitivity and optimize the overall link budget, equalization is required to compensate for undesired signal distortion induced by the transmitter. In this paper, we propose and demonstrate a novel optical equalization scheme using a silicon photonic micro-ring resonator (MRR)-based switching circuit for mitigating driver-amplifier-induced pulsewidth distortion. The switching circuit simultaneously functions as a spatial optical switch as well as a two-stage optical bandpass filter for optical equalization. The experimental results indicate a 4.5-dB detection sensitivity enhancement at a data rate of 12.5 Gbits/s. The proposed approach is robust to different levels of pulsewidth distortion without additional signal processing, and has possibilities to support higher data rates by adjusting the MRR parameters
    corecore