4,320 research outputs found
Quantitative information flow under generic leakage functions and adaptive adversaries
We put forward a model of action-based randomization mechanisms to analyse
quantitative information flow (QIF) under generic leakage functions, and under
possibly adaptive adversaries. This model subsumes many of the QIF models
proposed so far. Our main contributions include the following: (1) we identify
mild general conditions on the leakage function under which it is possible to
derive general and significant results on adaptive QIF; (2) we contrast the
efficiency of adaptive and non-adaptive strategies, showing that the latter are
as efficient as the former in terms of length up to an expansion factor bounded
by the number of available actions; (3) we show that the maximum information
leakage over strategies, given a finite time horizon, can be expressed in terms
of a Bellman equation. This can be used to compute an optimal finite strategy
recursively, by resorting to standard methods like backward induction.Comment: Revised and extended version of conference paper with the same title
appeared in Proc. of FORTE 2014, LNC
X-Ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu
We have used a MHz lock-in x-ray spectro-microscopy technique to directly
detect changes of magnetic moments in Cu due to spin injection from an adjacent
Co layer. The elemental and chemical specificity of x-rays allows us to
distinguish two spin current induced effects. We detect the creation of
transient magnetic moments of on Cu atoms
within the bulk of the 28 nm thick Cu film due to spin-accumulation. The moment
value is compared to predictions by Mott's two current model. We also observe
that the hybridization induced existing magnetic moments on Cu interface atoms
are transiently increased by about 10% or .
This reveals the dominance of spin-torque alignment over Joule heat induced
disorder of the interfacial Cu moments during current flow
Towards Inferring Mechanical Lock Combinations using Wrist-Wearables as a Side-Channel
Wrist-wearables such as smartwatches and fitness bands are equipped with a
variety of high-precision sensors that support novel contextual and
activity-based applications. The presence of a diverse set of on-board sensors,
however, also expose an additional attack surface which, if not adequately
protected, could be potentially exploited to leak private user information. In
this paper, we investigate the feasibility of a new attack that takes advantage
of a wrist-wearable's motion sensors to infer input on mechanical devices
typically used to secure physical access, for example, combination locks. We
outline an inference framework that attempts to infer a lock's unlock
combination from the wrist motion captured by a smartwatch's gyroscope sensor,
and uses a probabilistic model to produce a ranked list of likely unlock
combinations. We conduct a thorough empirical evaluation of the proposed
framework by employing unlocking-related motion data collected from human
subject participants in a variety of controlled and realistic settings.
Evaluation results from these experiments demonstrate that motion data from
wrist-wearables can be effectively employed as a side-channel to significantly
reduce the unlock combination search-space of commonly found combination locks,
thus compromising the physical security provided by these locks
Skill obsolescence, vintage effects and changing tasks
Human capital is no doubt one of the most important factors for future economic growth and well-being. However, human capital is also prone to becoming obsolete over time. Skills that have been acquired at one point in time may perfectly match the skill requirements at that time but may become obsolete as time goes by. Thus, in the following paper, we study the depreciation processes of the human capital of workers performing different types of tasks with different skill requirements over a period of more than twenty years. We argue that two types of tasks must be distinguished: knowledge-based tasks and experience-based tasks. Knowledge-based tasks demand skills depending on the actual stock of technological knowledge in a society whereas experience-based tasks demand skills depending on personal factors and individual experience values. We show, by applying Mincer regressions on four different cross sections, that the human capital of people performing knowledge-based tasks suffers more from depreciation than the human capital of individuals performing experience-based tasks
On the Gold Standard for Security of Universal Steganography
While symmetric-key steganography is quite well understood both in the
information-theoretic and in the computational setting, many fundamental
questions about its public-key counterpart resist persistent attempts to solve
them. The computational model for public-key steganography was proposed by von
Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first
universal public-key stegosystem - i.e. one that works on all channels -
achieving security against replayable chosen-covertext attacks (SS-RCCA) and
asked whether security against non-replayable chosen-covertext attacks (SS-CCA)
is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every
efficiently sampleable channel, but did not achieve universality. He posed the
question whether universality and SS-CCA-security can be achieved
simultaneously. No progress on this question has been achieved since more than
a decade. In our work we solve Hopper's problem in a somehow complete manner:
As our main positive result we design an SS-CCA-secure stegosystem that works
for every memoryless channel. On the other hand, we prove that this result is
the best possible in the context of universal steganography. We provide a
family of 0-memoryless channels - where the already sent documents have only
marginal influence on the current distribution - and prove that no
SS-CCA-secure steganography for this family exists in the standard
non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl
Hubbard band or oxygen vacancy states in the correlated electron metal SrVO?
We study the effect of oxygen vacancies on the electronic structure of the
model strongly correlated metal SrVO. By means of angle-resolved
photoemission (ARPES) synchrotron experiments, we investigate the systematic
effect of the UV dose on the measured spectra. We observe the onset of a
spurious dose-dependent prominent peak at an energy range were the lower
Hubbard band has been previously reported in this compound, raising questions
on its previous interpretation. By a careful analysis of the dose dependent
effects we succeed in disentangling the contributions coming from the oxygen
vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES
spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard
band remains. We support our study by means of state-of-the-art ab initio
calculations that include correlation effects and the presence of oxygen
vacancies. Our results underscore the relevance of potential spurious states
affecting ARPES experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a
two-dimensional electron gas (2DEG) at the surface of insulating
transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
Magnetism and domain formation in SU(3)-symmetric multi-species Fermi mixtures
We study the phase diagram of an SU(3)-symmetric mixture of three-component
ultracold fermions with attractive interactions in an optical lattice,
including the additional effect on the mixture of an effective three-body
constraint induced by three-body losses. We address the properties of the
system in by using dynamical mean-field theory and variational Monte
Carlo techniques. The phase diagram of the model shows a strong interplay
between magnetism and superfluidity. In the absence of the three-body
constraint (no losses), the system undergoes a phase transition from a color
superfluid phase to a trionic phase, which shows additional particle density
modulations at half-filling. Away from the particle-hole symmetric point the
color superfluid phase is always spontaneously magnetized, leading to the
formation of different color superfluid domains in systems where the total
number of particles of each species is conserved. This can be seen as the SU(3)
symmetric realization of a more general tendency to phase-separation in
three-component Fermi mixtures. The three-body constraint strongly disfavors
the trionic phase, stabilizing a (fully magnetized) color superfluid also at
strong coupling. With increasing temperature we observe a transition to a
non-magnetized SU(3) Fermi liquid phase.Comment: 36 pages, 17 figures; Corrected typo
Results from phase 1 of the HAYSTAC microwave cavity axion experiment
We report on the results from a search for dark matter axions with the
HAYSTAC experiment using a microwave cavity detector at frequencies between
5.6-5.8. We exclude axion models with two photon coupling
, a factor of 2.7
above the benchmark KSVZ model over the mass range 23.15<24.0. This doubles the range reported in our previous
paper. We achieve a near-quantum-limited sensitivity by operating at a
temperature and incorporating a Josephson parametric amplifier
(JPA), with improvements in the cooling of the cavity further reducing the
experiment's system noise temperature to only twice the Standard Quantum Limit
at its operational frequency, an order of magnitude better than any other dark
matter microwave cavity experiment to date. This result concludes the first
phase of the HAYSTAC program utilizing a conventional copper cavity and a
single JPA
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
