7,742 research outputs found
Observation of mixed anisotropy in the critical susceptibility of an ultrathin magnetic film
Measurements of the magnetic susceptibility of Fe/W(110) films with thickness
in the range of 1.6 to 2.4 ML Fe, show that in addition to the large response
along the easy axis associated with the Curie transition, there is a much
smaller, paramagnetic hard axis response that is not consistent with the 2D
anisotropic Heisenberg model used to describe homogeneous in-plane ferromagnets
with uniaxial anisotropy. The shape, amplitude, and peak temperature of the
hard axis susceptibility, as well as its dependence upon layer completion close
to 2.0 ML, indicate that inhomogeneities in the films create a system of mixed
anisotropy. A likely candidate for inhomogeneities that are magnetically
relevant in the critical region are the closed lines of step edges associated
with the incomplete layers. According to the Harris criterion, the existence of
magnetically relevant inhomogeneities may alter the critical properties of the
films from those of a 2D Ising model. Experiments in the recent literature are
discussed in this context.Comment: 9 two-column pages, 6 figures. This replacement has a new title and
abstract, and one additional figur
Investigation of spray dispersion and particulate formation in diesel fuel flames
An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets
Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies
The recent discovery of hindrance in heavy-ion induced fusion reactions at
extreme sub-barrier energies represents a challenge for theoretical models.
Previously, it has been shown that in medium-heavy systems, the onset of fusion
hindrance depends strongly on the "stiffness" of the nuclei in the entrance
channel. In this work, we explore its dependence on the total mass and the
-value of the fusing systems and find that the fusion hindrance depends in a
systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure
Caudal cervical vertebral morphological variation is not associated with clinical signs in Warmblood horses
Background Variation in equine caudal cervical spine morphology at C6 and C7 has high prevalence in Warmblood horses and is suspected to be associated with pain in a large mixed-breed group of horses. At present no data exist on the relationship between radiographic phenotype and clinical presentation in Warmblood horses in a case-control study. Objectives To establish the frequency of radiographically visible morphologic variation in a large group of Warmblood horses with clinical signs and compare this with a group without clinical signs. We hypothesised that occurrence of morphologic variation in the case group would not differ from the control group, indicating there is no association between clinical signs and morphologic variation. Study design Retrospective case-control. Methods Radiographic presence or absence of morphologic variation of cervical vertebrae C6 and C7 was recorded in case (n = 245) and control horses (n = 132). Case and control groups were compared by univariable Pearson's Chi-square and multivariable logistic regression for measurement variables age, sex, breed, degenerative joint disease and morphologic variation at C6 and C7. Odds ratio and confidence intervals were obtained. A P <= 0.05 was considered statistically significant. Results Morphologic variation at C6 and C7 (n = 108/377 = 28.6%; Cases 58/245 = 23.7%; Control 50/132 = 38%) was less frequent in horses with clinical signs in univariable testing (OR 0.48, 95% CI 0.3-0.8, P = 0.001). Age, sex, breed and degenerative joint disease were not retained in the final multivariable logistic regression step whereas morphologic variation remained significantly less present in horses with clinical signs. Main limitations Possible demographic differences between equine clinics. Conclusions Morphologic variation in the caudal cervical spine was detected more frequently in horses without clinical signs. Therefore, radiographic presence of such variation does not necessarily implicate the presence of clinical signs
Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach
<p>Abstract</p> <p>Background</p> <p>Guidewire (GW) size and stenosis dimensions are the two major factors affecting the translesional pressure drop. Studying the combined effect of these parameters on the mean pressure drop (Î<it>p</it>) across the stenosis is of high practical importance.</p> <p>Methods</p> <p>In this study, time averaged mass and momentum conservation equations are solved analytically to obtain pressure drop-flow, Î<it>p</it>-<it>Q</it>, curves for three different percentage area blockages corresponding to moderate (64%), intermediate (80%), and severe (90%) stenoses. Stenosis is considered to be axisymmetric consisting of three different sections namely converging, throat, and diverging regions. Analytical expressions for pressure drop are obtained for each of these regions separately. Using this approach, effects of lesion length and GW insertion on the mean translesional pressure drop and its component (loss due to momentum change and viscous loss) are analyzed.</p> <p>Results and Conclusion</p> <p>It is observed that for a given percent area stenosis (AS), increase in the throat length only increases the viscous loss. However, increase in the severity of stenosis and GW insertion increase both loss due to momentum change and viscous loss. GW insertion has greater contribution to the rise in viscous loss (increase by 2.14 and 2.72 times for 64% and 90% AS, respectively) than loss due to momentum change (1.34% increase for 64% AS and 25% decrease for 90% AS). It also alters the hyperemic pressure drop in moderate (48% increase) to intermediate (30% increase) stenoses significantly. However, in severe stenoses GW insertion has a negligible effect (0.5% increase) on hyperemic translesional pressure drop. It is also observed that pressure drop in a severe stenosis is less sensitive to lesion length variation (4% and 14% increase in Î<it>p </it>for without and with GW, respectively) as compared to intermediate (10% and 30% increase in Î<it>p </it>for without and with GW, respectively) and moderate stenoses (22% and 48% increase in Î<it>p </it>for without and with GW, respectively). Based on the contribution of pressure drop components to the total translesional pressure drop, it is found that viscous losses are dominant in moderate stenoses, while in severe stenoses losses due to momentum changes are significant. It is also shown that this simple analytical solution can provide valuable information regarding interpretation of coronary diagnostic parameters such as fractional flow reserve (FFR).</p
The temperature dependence of FeRh's transport properties
The finite-temperature transport properties of FeRh compounds are
investigated by first-principles Density Functional Theory-based calculations.
The focus is on the behavior of the longitudinal resistivity with rising
temperature, which exhibits an abrupt decrease at the metamagnetic transition
point, between ferro- and antiferromagnetic phases. A detailed
electronic structure investigation for K explains this feature and
demonstrates the important role of (i) the difference of the electronic
structure at the Fermi level between the two magnetically ordered states and
(ii) the different degree of thermally induced magnetic disorder in the
vicinity of , giving different contributions to the resistivity. To
support these conclusions, we also describe the temperature dependence of the
spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter.
For the various response quantities considered the impact of thermal lattice
vibrations and spin fluctuations on their temperature dependence is
investigated in detail. Comparison with corresponding experimental data finds
in general a very good agreement
Fission Hindrance in hot 216Th: Evaporation Residue Measurements
The fusion evaporation-residue cross section for 32S+184W has been measured
at beam energies of E_beam = 165, 174, 185, 196, 205, 215, 225, 236, 246,and
257 MeV using the ATLAS Fragment Mass Analyzer. The data are compared with
Statistical Model calculations and it is found that a nuclear dissipation
strength, which increases with excitation energy, is required to reproduce the
excitation function. A comparison with previously published data show that the
dissipation strength depends strongly on the shell structure of the nuclear
system.Comment: 15 pages 9 figure
Three-Axis Fiber-Optic Body Force Sensor for Flexible Manipulators
This paper proposes a force/torque sensor structure that can be easily integrated into a flexible manipulator structure. The sensor's ring-like structure with its hollow inner section provides ample space for auxiliary components, such as cables and tubes, to be passed through and, hence, is very suitable for integration with tendon-driven and fluid-actuated manipulators. The sensor structure can also accommodate the wiring for a distributed sensor system as well as for diagnostic instruments that may be incorporated in the manipulator. Employing a sensing approach based on optical fibers as done here allows for the creation of sensors that are free of electrical currents at the point of sensing and immune to magnetic fields. These sensors are inherently safe when used in the close vicinity of humans and their measuring performance is not impaired when they are operated in or nearby machines, such as magnetic resonance imaging scanners. This type of sensor concept is particularly suitable for inclusion in instruments and robotic tools for minimally invasive surgery. This paper summarizes the design, integration challenges, and calibration of the proposed optical three-axis force sensor. The experimental results confirm the effectiveness of our optical sensing approach and show that after calibrating its stiffness matrix, force and momentum components can be determined accurately
Spatially resolved ultrafast precessional magnetization reversal
Spatially resolved measurements of quasi-ballistic precessional magnetic
switching in a microstructure are presented. Crossing current wires allow
detailed study of the precessional switching induced by coincident longitudinal
and transverse magnetic field pulses. Though the response is initially
spatially uniform, dephasing occurs leading to nonuniformity and transient
demagnetization. This nonuniformity comes in spite of a novel method for
suppression of end domains in remanence. The results have implications for the
reliability of ballistic precessional switching in magnetic devices.Comment: 17 pages (including 4 figures), submitted to Phys. Rev. Let
- âŠ