43 research outputs found

    The presence of high level soluble herpes virus entry mediator in sera of gastric cancer patients

    Get PDF
    The development of gastric cancer (GC) is closely related to chronic inflammation caused by Helicobacter pylori infection, and herpes virus entry mediator (HVEM) is a receptor expressed on the surface of leukocytes that mediates potent inflammatory responses in animal models. However, the role of HVEM in human GC has not been studied. Previously, we showed that the interaction of HVEM on human leukocytes with its ligand LIGHT induces intracellular calcium mobilization, which results in inflammatory responses including induction of proinflammatory cytokine production and anti-bacterial activities. In this study, we report that leukocytes from GC patients express lower levels of membrane HVEM (mHVEM) and have lower LIGHT-induced bactericidal activities than those from healthy controls (HC). In contrast, levels of soluble HVEM (sHVEM) in the sera of GC patients were significantly higher than in those of HC. We found that monocyte membrane-bound HVEM is released into the medium when cells are activated by proinflammatory cytokines such as TNF-α and IL-8, which are elevated in the sera of GC patients. mHVEM level dropped in parallel with the release of sHVEM, and release was completely blocked by the metalloprotease inhibitor, GM6001. We also found that the low level of mHVEM on GC patient leukocytes was correlated with low LIGHT-induced bactericidal activities against H. pylori and S. aureus and production of reactive oxygen species. Our results indicate that mHVEM on leukocytes and sHVEM in sera may contribute to the development and/or progression of GC

    Production of safe cyanobacterial biomass for animal feed using wastewater and drinking water treatment residuals

    No full text
    The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate Spirulina platensis, yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums

    Identification of Heat Shock Protein 60 as a Regulator of Neutral Sphingomyelinase 2 and Its Role in Dopamine Uptake.

    Get PDF
    Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH-optimum and Mg(2+)-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2

    Resistance to Cleavage of Core–Shell Rubber/Epoxy Composite Foam Adhesive under Impact Wedge–Peel Condition for Automobile Structural Adhesive

    No full text
    Epoxy foam adhesives are widely used for weight reduction, watertight property, and mechanical reinforcement effects. However, epoxy foam adhesives have poor impact resistance at higher expansion ratios. Hence, we prepared an epoxy composite foam adhesive with core–shell rubber (CSR) particles to improve the impact resistance and applied it to automotive structural adhesives. The curing behavior and pore structure were characterized by differential scanning calorimetry (DSC) and X-ray computed tomography (CT), respectively, and impact wedge–peel tests were conducted to quantitatively evaluate the resistance to cleavage of the CSR/epoxy composite foam adhesives under impact. At 5 and 10 phr CSR contents, the pore size and expansion ratio increased sufficiently due to the decrease in curing rate. However, at 20 phr CSR content, the pore size decreased, which might be due to the steric hindrance effect of the CSR particles. Notably, at 0 and 0.1 phr foaming agent contents, the resistance to cleavage of the adhesives under the impact wedge–peel condition significantly improved with increasing CSR content. Thus, the CSR/epoxy composite foam adhesive containing 0.1 phr foaming agent and 20 phr CSR particles showed high impact resistance (EC = 34,000 mJ/cm2) and sufficient expansion ratio (~148%)

    Hsp60 siRNA increases N-SMase activity in N-SMase2–overexpressed HEK293 cells.

    No full text
    <p>HEK293 cells were seeded into six-well dishes, and 24 h later, they were transfected with the negative control (mock and scramble) or Hsp60 siRNA (20 nM). After 48 h, the cells were transfected with N-SMase2 for 24 h. Total protein was extracted, and the N-SMase activity was determined (<i>A</i>) followed by immunoblotting for Hsp60, N-SMase2, and GAPDH (<i>B</i>). The results represent the mean ± S.D. of five independent experiments. *<i>p</i><0.05 compared with scramble control. After siRNA transfection for 48 h, the cells were transfected with N-SMase2 and incubated for the indicated time periods. Total protein was extracted, and N-SMase activity was determined (<i>C</i>) followed by immunoblotting for Hsp60, N-SMase2, and GAPDH (<i>D</i>). These results represent the mean ± S.D. from a single experiment performed in triplicate. Similar results were obtained in three independent experiments.</p
    corecore