193 research outputs found

    Facultative methanotrophs are abundant at terrestrial natural gas seeps

    Get PDF
    Background: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Results: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. Conclusion: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons

    The FIRST large-scale mapping of radon concentration in soil gas and water in Romania

    Get PDF
    In the framework of the last Council Directive 2013/59 (Euratom, 2014) laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, the problem of radon was assumed in Romania at national level by responsible authorities through the design and development of a National Radon Action Plan and an adequate legislation (HG nr. 526/2018). In order to identify radon risk areas, however, it is necessary to perform systematic radon measurements in different environmental media (soil gas, water, indoor air) and to map the results. This paper presents an atlas of up-to-date radon in soil and water levels for central and western part of Romania. The radon in soil map includes data from 2564 measurements carried out on-site, using Luk3C radon detector. The Luk-VR system was used to measure radon activity concentration from 2452 samples of drinking water. The average radon activity concentration was 29.3?kBq?m-3 for soil gas, respectively 9.8?Bq?l-1 for water dissolved air. Mapping of radon can be a useful tool to implement radon policies at both the national and local levels, defining priority areas for further study when land-use decisions must be made.This work was supported by the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, by the project ”Radon map (residential, geogenic, water) for center, west and north-west regions from Romania (RAMARO), PN-II-PCCA-PT-73/2012 and by the project ID P_37_229, Contract No. 22/01.09.2016, with the title „Smart Systems for Public Safety through Control and Mitigation of Residential Radon linked with Energy Efficiency Optimization of Buildings in Romanian Major Urban Agglomerations SMARTRAD-EN” of the POC Programme

    Noble gas and carbon isotope systematics at the seemingly inactive Ciomadul volcano (Eastern‐Central Europe, Romania): evidence for volcanic degassing

    Get PDF
    Ciomadul is the youngest volcano in the Carpathian-Pannonian Region, Eastern-Central Europe, which last erupted 30 ka. This volcano is considered to be inactive, however, combined evidence from petrologic and magnetotelluric data, as well as seismic tomography studies suggest the existence of a subvolcanic crystal mush with variable melt content. The volcanic area is characterized by high CO2 gas output rate, with a minimum of 8.7 × 103 t yr-1. We investigated 31 gas emissions at Ciomadul to constrain the origin of the volatiles. The ÎŽ13C-CO2 and 3He/4He compositions suggest the outgassing of a significant component of mantle-derived fluids. The He isotope signature in the outgassing fluids (up to 3.10 Ra) is lower than the values in the peridotite xenoliths of the nearby alkaline basalt volcanic field (R/Ra 5.95Ra±0.01) which are representative of a continental lithospheric mantle and significantly lower than MORB values. Considering the chemical characteristics of the Ciomadul dacite, including trace element and Sr- Nd and O isotope compositions, an upper crustal contamination is less probable, whereas the primary magmas could have been derived from an enriched mantle source. The low He isotopic ratios could indicate a strongly metasomatized mantle lithosphere. This could be due to infiltration of subduction-related fluids and postmetasomatic ingrowth of radiogenic He. The metasomatic fluids are inferred to have contained subducted carbonate material resulting in a heavier carbon isotope composition (13C is in the range of -1.4 to -4.6 ‰) and an increase of CO2/3He ratio. Our study shows the magmatic contribution to the emitted gases

    The POT1-TPP1 telomere complex is a telomerase processivity factor

    Full text link
    Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 ( protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the beta-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing beta-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1 - TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62923/1/nature05454.pd

    Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps

    Get PDF
    Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites

    The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold

    Get PDF
    The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation
    • 

    corecore