36 research outputs found

    Why disease ecology needs life-history theory: a host perspective

    Get PDF
    When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organisation, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife

    Synthesis of Batrachochytrium dendrobatidis infection in South America: amphibian species under risk and areas to focus research and disease mitigation

    Get PDF
    Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), has been recognized as the infectious disease causing the most catastrophic loss of biodiversity known to science, with South America being the most impacted region. We tested whether Bd prevalence is distributed among host taxonomy, ecoregion, conservation status and habitat preference in South America. Here we provide a synthesis on the extent of Bd infection across South America based on 21 648 molecular diagnostic assays, roles of certain species in the epidemiology of Bd and explore its association with the reported amphibian catastrophic declines in the region. We show that Bd is widespread, with a continental prevalence of 23.2%. Its occurrence in the region shows a phylogenetic signal and the probability of infection is determined by ecoregion, preferred habitat and extinction risk hosts' traits. The taxa exhibiting highest Bd occurrence were mostly aquatic amphibians, including Ranidae, Telmatobiidae, Hylodidae, Calyptocephalellidae and Pipidae. Surprisingly, families exhibiting unusually low Bd prevalence included species in which lethal chytridiomycosis and population declines have been described (genera Atelopus, Rhinoderma and Eleutherodactylus). Higher than expected prevalence of Bd occurred mainly in amphibians living in association with mountain environments in the Andes and Atlantic forests, reflecting highly favourable Bd habitats in these areas. Invasive amphibian species (e.g. Lithobates catesbeianus and Xenopus laevis) exhibited high Bd prevalence; thus we suggest using these as sentinels to understand their potential role as reservoirs, vectors or spreaders of Bd that can be subjected to management. Our results guide on the prioritization of conservation actions to prevent further biodiversity loss due to chytridiomycosis in the world's most amphibian diverse region

    Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient

    Get PDF
    AbstractAmphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008–2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.</jats:p

    Cryptic invasion drives phenotypic changes in central European threespine stickleback

    Get PDF
    Cryptic invasions are commonly associated with genetic changes of the native species or genetic lineage that the invaders replace. Phenotypic shifts resulting from cryptic invasions are less commonly reported given the relative paucity of historical specimens that document such phenotypic changes. Here, I study such a case in two populations of threespine stickleback from central Europe, comparing contemporary patterns of gene flow with phenotypic changes between historical and contemporary population samples. I find gene flow from an invasive lineage to be associated with significant phenotypic changes, where the degree of phenotypic change corresponds with the level of gene flow that a population receives. These findings underline the utility of combining genetic approaches with phenotypic data to estimate the impact of gene flow in systems where anthropogenic alterations have removed former geographic barriers promoting cryptic invasions

    Female responses to experimental removal of sexual selection components in Drosophila melanogaster

    Get PDF
    Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies

    Cost of living in free-ranging degus (Octodon degus):seasonal dynamics of energy expenditure

    No full text
    Animals process and allocate energy at different seasons at variable rates, depending on their breeding season and changes in environmental conditions and resulting physiological demands. Overall total energy expenditure, in turn, should either increase in some seasons due to special added demands (e.g. reproduction) or it could simply remain at about the same level, in which case the animals must show compensatory rebalancing of other expenditures that can be reduced. To test for the alternative hypotheses of seasonal variability or compensation, we measured total daily energy expenditure (DEE) in free-living degus (Octodon degus) at four seasons and followed this with determinations of basal metabolic rate (BMR) in the laboratory in the same individuals. DEE varied seasonally but was only significantly different (lower) in summer (non-breeding season), with a DEE:BMR ratio of only 1.6, whereas autumn, winter and spring DEE values were statistically indistinguishable from one another and showed DEE:BMR ratios ranging from 1.9 to 2.2. Our values of DEE in the field fall within the broad range of allometric expectation for herbivorous mammals in general, but the ratios of DEE:BMR are lower than expected. This, together with the lack of strong major shifts in total levels of DEE, suggests that degus are showing compensatory shifts among various categories of energy expenditure that allow them to manage their overall energy balance by minimizing total expenditure. (C) 2003 Elsevier Inc. All rights reserved

    Cost of living in free-ranging degus (Octodon degus):Seasonal dynamics of energy expenditure

    No full text
    Animals process and allocate energy at different seasons at variable rates, depending on their breeding season and changes in environmental conditions and resulting physiological demands. Overall total energy expenditure, in turn, should either increase in some seasons due to special added demands (e.g. reproduction) or it could simply remain at about the same level, in which case the animals must show compensatory rebalancing of other expenditures that can be reduced. To test for the alternative hypotheses of seasonal variability or compensation, we measured total daily energy expenditure (DEE) in free-living degus (Octodon degus) at four seasons and followed this with determinations of basal metabolic rate (BMR) in the laboratory in the same individuals. DEE varied seasonally but was only significantly different (lower) in summer (non-breeding season), with a DEE:BMR ratio of only 1.6, whereas autumn, winter and spring DEE values were statistically indistinguishable from one another and showed DEE:BMR ratios ranging from 1.9 to 2.2. Our values of DEE in the field fall within the broad range of allometric expectation for herbivorous mammals in general, but the ratios of DEE:BMR are lower than expected. This, together with the lack of strong major shifts in total levels of DEE, suggests that degus are showing compensatory shifts among various categories of energy expenditure that allow them to manage their overall energy balance by minimizing total expenditure. (C) 2003 Elsevier Inc. All rights reserved.</p

    Interactions among patch area, forest structure and water fluxes in a fog-inundated forest ecosystem in semi-arid Chile

    No full text
    P>1. The area or size of an ecosystem affects the acquisition, storage and redistribution of energy and matter. Patch size reduction due to natural or anthropogenic habitat loss will not only modify species distribution and patch structure but also affect the ecosystem processes that are, in part, responsible for patch persistence. 2. In a fog-dependent forest ecosystem, trees and their architectures play essential roles in capturing and redistributing water from collection surfaces. In this paper, we address the question of how forest patch size and structure interact to determine fog water inputs and storage in a fog-inundated, coastal ecosystem in semi-arid Chile (30 degrees S). 3. Six forest patches ranging in area from 0 center dot 2 to 36 ha on a coastal mountaintop of Fray Jorge National Park were characterized using 0 center dot 1 ha plots laid down at the centre of each forest patch. In each patch, we assessed tree basal area as a measure of forest structure, recorded daily air temperature and humidity, measured water influx from stemflow and throughfall (water that has passed through the forest canopy). Soil and litter gravimetric water contents were used as a measure of storage. 4. Total tree basal area per hectare was positively related to patch area, despite some variation at the species level. Mean and maximum air temperatures inside the patches were inversely related to patch size, with maximum temperatures differing by 2 degrees C on average. Annual fog water capture by trees within forest patches (net throughfall) was estimated in 296 center dot 1 mm after rain flux (about 122 mm) was subtracted. Throughfall volume and patch area were uncorrelated, but stemflow volume, soil and litter water contents scaled positively with patch area, showing a functional link between water interception and ecosystem retention. 5. Our study shows that ecosystem area in this mosaic of fog-dependent temperate forest patches can modify water fluxes and storage capacity of the ecosystem. This finding has important consequences for fragmented landscapes, where large continuous forests are fragmented into smaller patches, affecting not only the persistence of species but also the continuity of critical ecosystem processes
    corecore