168 research outputs found
Partition Pooling for Convolutional Graph Network Applications in Particle Physics
Convolutional graph networks are used in particle physics for effective event
reconstructions and classifications. However, their performances can be limited
by the considerable amount of sensors used in modern particle detectors if
applied to sensor-level data. We present a pooling scheme that uses
partitioning to create pooling kernels on graphs, similar to pooling on images.
Partition pooling can be used to adopt successful image recognition
architectures for graph neural network applications in particle physics. The
reduced computational resources allow for deeper networks and more extensive
hyperparameter optimizations. To show its applicability, we construct a
convolutional graph network with partition pooling that reconstructs simulated
interaction vertices for an idealized neutrino detector. The pooling network
yields improved performance and is less susceptible to overfitting than a
similar network without pooling. The lower resource requirements allow the
construction of a deeper network with further improved performance
Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation
Parallelism of tight-binding molecular dynamics simulations is presented by
means of the order-N electronic structure theory with the Wannier states,
recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is
tested for silicon nanocrystals of more than millions atoms with the
transferable tight-binding Hamiltonian. The efficiency of parallelism is
perfect, 98.8 %, and the method is the most suitable to parallel computation.
The elapse time for a system of atoms is 3.0 minutes by a
computer system of 64 processors of SGI Origin 3800. The calculated results are
in good agreement with the results of the exact diagonalization, with an error
of 2 % for the lattice constant and errors less than 10 % for elastic
constants.Comment: 5 pages, 3 figure
Innovationsindikator 2017: Schwerpunkt digitale Transformation
[Zusammenfassung ...] Deutschland gehört zu den innovationsstärksten Ländern der Welt und belegt unverändert Rang vier im Innovationsindikator - allerdings erreicht das deutsche Innovationssystem in keinem der Teilbereiche Wirtschaft, Wissenschaft, Bildung, Staat und Gesellschaft eine Topplatzierung. [...] Gemessen am Digitalisierungsindikator, der für diese Ausgabe des Innovationsindikators erstellt wurde, liegt Deutschland deutlich hinter anderen Industrienationen zurück (Rang 17). Das gilt besonders für die Bereiche Forschung/Technologie (Rang 16), Bildung (Rang 17) und Infrastruktur/Staat (Rang 19)
Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2
Recent progress in the formulation of a fully dynamical local approximation
to time-dependent Density Functional Theory appeals to the longitudinal and
transverse components of the exchange and correlation kernel in the linear
current-density response of the homogeneous fluid at long wavelength. Both
components are evaluated for the electron gas in dimensionality D=3 and D=2 by
an approximate decoupling in the equation of motion for the current density,
which accounts for processes of excitation of two electron-hole pairs. Each
pair is treated in the random phase approximation, but the role of exchange and
correlation is also examined; in addition, final-state exchange processes are
included phenomenologically so as to satisfy the exactly known high-frequency
behaviours of the kernel. The transverse and longitudinal spectra involve the
same decay channels and are similar in shape. A two-plasmon threshold in the
spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real
part of the exchange and correlation kernel at twice the plasma frequency. In
D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in
the real part of the kernel, as a consequence of the dispersion law of the
plasmon vanishing at long wavelength. The numerical results have been fitted to
simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.
Supersymmetric Vacua in Random Supergravity
We determine the spectrum of scalar masses in a supersymmetric vacuum of a
general N=1 supergravity theory, with the Kahler potential and superpotential
taken to be random functions of N complex scalar fields. We derive a random
matrix model for the Hessian matrix and compute the eigenvalue spectrum.
Tachyons consistent with the Breitenlohner-Freedman bound are generically
present, and although these tachyons cannot destabilize the supersymmetric
vacuum, they do influence the likelihood of the existence of an `uplift' to a
metastable vacuum with positive cosmological constant. We show that the
probability that a supersymmetric AdS vacuum has no tachyons is formally
equivalent to the probability of a large fluctuation of the smallest eigenvalue
of a certain real Wishart matrix. For normally-distributed matrix entries and
any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2),
with W denoting the superpotential and m_{susy} the supersymmetric mass scale;
for more general distributions of the entries, our result is accurate when N >>
1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are
ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure
Many-body correlations probed by plasmon-enhanced drag measurements in double quantum well structures
Electron drag measurements of electron-electron scattering rates performed
close to the Fermi temperature are reported. While evidence of an enhancement
due to plasmons, as was recently predicted [K. Flensberg and B. Y.-K. Hu, Phys.
Rev. Lett. 73, 3572 (1994)], is found, important differences with the
random-phase approximation based calculations are observed. Although static
correlation effects likely account for part of this difference, it is argued
that correlation-induced multiparticle excitations must be included to account
for the magnitude of the rates and observed density dependences.Comment: 4 pages, 3 figures, revtex Accepted in Phys. Rev.
D-brane potentials in the warped resolved conifold and natural inflation
In this paper we obtain a model of Natural Inflation from string theory with
a Planckian decay constant. We investigate D-brane dynamics in the background
of the warped resolved conifold (WRC) throat approximation of Type IIB string
compactifications on Calabi-Yau manifolds. When we glue the throat to a compact
bulk Calabi-Yau, we generate a D-brane potential which is a solution to the
Laplace equation on the resolved conifold. We can exactly solve this equation,
including dependence on the angular coordinates. The solutions are valid down
to the tip of the resolved conifold, which is not the case for the more
commonly used deformed conifold. This allows us to exploit the effect of the
warping, which is strongest at the tip. We inflate near the tip using an
angular coordinate of a D5-brane in the WRC which has a discrete shift
symmetry, and feels a cosine potential, giving us a model of Natural Inflation,
from which it is possible to get a Planckian decay constant whilst maintaining
control over the backreaction. This is because the decay constant for a wrapped
brane contains powers of the warp factor, and so can be made large, while the
wrapping parameter can be kept small enough so that backreaction is under
control.Comment: 41 pages, 3 appendices, 1 figure, PDFLaTex; various clarifications
added along with a new appendix on b-axions and wrapped D5 branes;version
matches the one published in JHE
Transplanckian axions !?
We discuss quantum gravitational effects in Einstein theory coupled to
periodic axion scalars to analyze the viability of several proposals to achieve
superplanckian axion periods (aka decay constants) and their possible
application to large field inflation models. The effects we study correspond to
the nucleation of euclidean gravitational instantons charged under the axion,
and our results are essentially compatible with (but independent of) the Weak
Gravity Conjecture, as follows: Single axion theories with superplanckian
periods contain gravitational instantons inducing sizable higher harmonics in
the axion potential, which spoil superplanckian inflaton field range. A similar
result holds for multi-axion models with lattice alignment (like the
Kim-Nilles-Peloso model). Finally, theories with axions can still achieve a
moderately superplanckian periodicity (by a factor) with no higher
harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in
this case due to the absence of some instantons, which are forbidden by a
discrete gauge symmetry. Finally we discuss the realization of
these instantons as euclidean D-branes in string compactifications.Comment: 46 pages, 6 figures. Added references, clarifications, and missing
factor of 1/2 to instanton action. Conclusions unchange
- …