2,149 research outputs found

    Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures

    Get PDF
    We present the results of a 2.7 mm continuum interferometric survey of 24 young stellar objects in 11 fields. The target objects range from deeply embedded Class 0 sources to optical T Tauri sources. This is the first sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded stellar systems. The images show a diversity of structure and complexity. The optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae) have continuum emission dominated by compact, less than 1", circumstellar disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have continuum emission that is extended and compact. The embedded sources (L1448 IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have continuum emission dominated by the extended envelope, typically more than 85%. In fact, in many of the deeply embedded systems it is difficult to uniquely isolate the disk emission component from the envelope extending inward to AU size scales. All of the target embedded objects are in multiple systems with separations on scales of 30" or less. Based on the system separation, we place the objects into three categories: separate envelope (separation > 6500 AU), common envelope (separation 150-3000 AU), and common disk (separation < 100 AU). These three groups can be linked with fragmentation events during the star formation process: separate envelopes from prompt initial fragmentation and the separate collapse of a loosely condensed cloud, common envelopes from fragmentation of a moderately centrally condensed spherical system, and common disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte

    Diagnosing shock temperature with NH3_3 and H2_2O profiles

    Get PDF
    In a previous study of the L1157 B1 shocked cavity, a comparison between NH3_3(10_0-000_0) and H2_2O(110_{\rm 10}--101_{\rm 01}) transitions showed a striking difference in the profiles, with H2_2O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH3_3 and H2_2O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH3_3(10_0-00_0) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H2_2O(110_{\rm 10}--101_{\rm 01}) line within the WISH KP. We detected the ammonia emission at high-velocities at most of the outflows positions. In all cases, the water emission reaches higher velocities than NH3_3, proving that this behaviour is not exclusive of the L1157-B1 position. Comparisons with a gas-grain chemical and shock model confirms, for this larger sample, that the behaviour of ammonia is determined principally by the temperature of the gas.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    The detection of Class I methanol masers towards regions of low-mass star formation

    Full text link
    Six young bipolar outflows in regions of low-to-intermediate-mass star formation were observed in the 7_0-6_1A+, 8_0-7_1A+, and 5_{-1}-4_0E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333IRAS4A, HH 25MMS, and L1157 B1. Flux densities of the detected lines are no higher than 11 Jy, which is much lower than the flux densities of strong maser lines in regions of high-mass star formation. Analysis shows that most likely the narrow features are masers.Comment: 12 pages, 6 figures, to be published in Astronomy Report

    The B1 shock in the L1157 outflow as seen at high spatial resolution

    Full text link
    We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.Comment: 13 pages, 12 figure

    CN and HCN in Dense Interstellar Clouds

    Full text link
    We present a theoretical investigation of CN and HCN molecule formation in dense interstellar clouds. We study the gas-phase CN and HCN production efficiencies from the outer photon-dominated regions (PDRs) into the opaque cosmic-ray dominated cores. We calculate the equilibrium densities of CN and HCN, and of the associated species C+, C, and CO, as functions of the far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17 s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure

    33.8 GHz CCS Survey of Molecular Cores in Dark Clouds

    Get PDF
    We have conducted a survey of the CCS JN=32−21J_N = 3_2-2_1 line toward 11 dark clouds and star-forming regions at 30 arcsec spatial resolution and 0.054 km/s velocity resolution. CCS was only detected in quiescent clouds, not in active star-forming regions. The CCS distribution shows remarkable clumpy structure, and 25 clumps are identified in 7 clouds. Seven clumps with extremely narrow nonthermal linewidths < 0.1 km/s are among the most quiescent clumps ever found. The CCS clumps tend to exist around the higher density regions traced by NH_3 emission or submillimeter continuum sources, and the distribution is not spherically symmetric. Variation of the CCS abundance was suggested as an indicator of the evolutionary status of star formation. However, we can only find a weak correlation between N(CCS) and nH2,virn_{H_2,vir}. The velocity distributions of CCS clouds reveal that a systematic velocity pattern generally exists. The most striking feature in our data is a ring structure in the position-velocity diagram of L1544 with an well-resolved inner hole of 0.04 pc x 0.13 km/s and an outer boundary of 0.16 pc x 0.55 km/s. This position-velocity structure clearly indicates an edge-on disk or ring geometry, and it can be interpreted as a collapsing disk with an infall velocity ≳\gtrsim 0.1 km/s and a rotational velocity less than our velocity resolution. Nonthermal linewidth distribution is generally coherent in CCS clouds, which could be evidence for the termination of Larson's Law at small scales, ∌\sim 0.1 pc.Comment: 21 pages, 25 ostscript figures, accepted for publication in the Supplement Series of the Astrophysical Journal (May 2000

    X-ray and Near-infrared Studies of a Star-forming Cloud; L1448

    Full text link
    We present the results of X-ray and near-infrared (NIR) observations of L1448, a star-forming region in the Perseus cloud complex using the Chandra X-ray Observatory and the 4 m telescope at the Kitt Peak National Observatory. We detect 72 X-ray sources in a ~17 arcmin x 17 arcmin region with a ~68 ks ACIS exposure, for which we conduct follow-up NIR imaging observations in a concentric ~11 arcmin x 11 arcmin region with FLAMINGOS down to m_Ks ~ 17 mag. Twelve X-ray sources have NIR or optical counterparts. By plotting X-ray mean energy versus NIR to X-ray flux ratio, the X-ray sources are clearly separated into two groups. The X-ray spectral and temporal features as well as NIR magnitudes and colors indicate that one group mainly consists of young stellar objects (YSOs) in the cloud and the other of background extragalactic sources. Ten X-ray-emitting YSO candidates are thus newly identified, which are low-mass or brown dwarf mass sources from their NIR magnitudes. In addition, a possible X-ray signal is found from a mid-infrared protostar L1448 IRS 3(A). The lack of detection of this source in our deep NIR images indicates that this source has a very steep spectral slope of > 3.2 in 2--10 micron.Comment: 13 pages, 7 postscript figures, accepted for publication in A

    Cold gas as an ice diagnostic toward low mass protostars

    Full text link
    Up to 90% of the chemical reactions during star formation occurs on ice surfaces, probably including the formation of complex organics. Only the most abundant ice species are however observed directly by infrared spectroscopy. This study aims to develop an indirect observational method of ices based on non-thermal ice desorption in the colder part of protostellar envelopes. For that purpose the IRAM 30m telescope was employed to observe two molecules that can be detected both in the gas and the ice, CH3 OH and HNCO, toward 4 low mass embedded protostars. Their respective gas-phase column densities are determined using rotational diagrams. The relationship between ice and gas phase abundances is subsequently determined. The observed gas and ice abundances span several orders of magnitude. Most of the CH3OH and HNCO gas along the lines of sight is inferred to be quiescent from the measured line widths and the derived excitation temperatures, and hence not affected by thermal desorption close to the protostar or in outflow shocks. The measured gas to ice ratio of ~10-4 agrees well with model predictions for non-thermal desorption under cold envelope conditions and there is a tentative correlation between ice and gas phase abundances. This indicates that non-thermal desorption products can serve as a signature of the ice composition. A larger sample is however necessary to provide a conclusive proof of concept.Comment: accepted by A&A letters, 10 pages including 5 figure

    Deuterated Ammonia in Galactic Protostellar Cores

    Get PDF
    We report on a survey of \nh2d towards protostellar cores in low-mass star formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two observed sources have significant (\gsim 5\sigma) \nh2d emission. Ion-molecule chemistry, which preferentially enhances deuterium in molecules above its cosmological value of \scnot{1.6}{-5} sufficiently explains these abundances. NH2D/NH3 ratios towards Class 0 sources yields information about the ``fossil remnants'' from the era prior to the onset of core collapse and star formation. We compare our observations with predictions of gas-phase chemical networks.Comment: 16 Pages, 7 Figures, Accepted to Ap.J., to appear in the June 20, 2001 editio
    • 

    corecore