1,150 research outputs found
Electron-phonon interaction in Graphite Intercalation Compounds
Motivated by the recent discovery of superconductivity in Ca- and
Yb-intercalated graphite (CaC and YbC) and from the ongoing debate
on the nature and role of the interlayer state in this class of compounds, in
this work we critically study the electron-phonon properties of a simple model
based on primitive graphite. We show that this model captures an essential
feature of the electron-phonon properties of the Graphite Intercalation
Compounds (GICs), namely, the existence of a strong dormant electron-phonon
interaction between interlayer and electrons, for which we
provide a simple geometrical explanation in terms of NMTO Wannier-like
functions. Our findings correct the oversimplified view that
nearly-free-electron states cannot interact with the surrounding lattice, and
explain the empirical correlation between the filling of the interlayer band
and the occurrence of superconductivity in Graphite-Intercalation Compounds.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
Accurate mass measurements of Ne, Na, Mg performed with the {\sc Mistral} spectrometer
The minuteness of the nuclear binding energy requires that mass measurements
be highly precise and accurate. Here we report on new measurements Mg
and Na performed with the {\sc Mistral} mass spectrometer at {\sc
Cern}'s {\sc Isolde} facility. Since mass measurements are prone to systematic
errors, considerable effort has been devoted to their evaluation and
elimination in order to achieve accuracy and not only precision. We have
therefore conducted a campaign of measurements for calibration and error
evaluation. As a result, we now have a satisfactory description of the {\sc
Mistral} calibration laws and error budget. We have applied our new
understanding to previous measurements of Ne, Na and
Mg for which re-evaluated values are reported.Comment: submitted to Nuclear Physics
Tailoring strain in SrTiO3 compound by low energy He+ irradiation
The ability to generate a change of the lattice parameter in a near-surface
layer of a controllable thickness by ion implantation of strontium titanate is
reported here using low energy He+ ions. The induced strain follows a
distribution within a typical near-surface layer of 200 nm as obtained from
structural analysis. Due to clamping effect from the underlying layer, only
perpendicular expansion is observed. Maximum distortions up to 5-7% are
obtained with no evidence of amorphisation at fluences of 1E16 He+ ions/cm2 and
ion energies in the range 10-30 keV.Comment: 11 pages, 4 figures, Accepted for publication in Europhysics Letter
(http://iopscience.iop.org/0295-5075
A Fully Differential Digital CMOS Pulse UWB Generator
A new fully-digital CMOS pulse generator for impulse-radio Ultra-Wide-Band (UWB) systems is presented. First, the shape of the pulse which best fits the FCC regulation in the 3.1-5 GHz sub-band of the entire 3.1-10.6 GHz UWB bandwidth is derived and approximated using rectangular digital pulses. In particular, the number and width of pulses that approximate an ideal template is found through an ad-hoc optimization methodology. Then a fully differential digital CMOS circuit that synthesizes the pulse sequence is conceived and its functionality demonstrated through post-layout simulations. The results show a very good agreement with the FCC requirements and a low power consumptio
An efficient k.p method for calculation of total energy and electronic density of states
An efficient method for calculating the electronic structure in large systems
with a fully converged BZ sampling is presented. The method is based on a
k.p-like approximation developed in the framework of the density functional
perturbation theory. The reliability and efficiency of the method are
demostrated in test calculations on Ar and Si supercells
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Uniaxial Phase Transition in Si : Ab initio Calculations
Based on a previously proposed thermodynamic analysis, we study the relative
stabilities of five Si phases under uniaxial compression using ab initio
methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The
possible phase-transition patterns were investigated by considering the phase
transitions between any two chosen phases of the five phases. By analyzing the
different conributions to the relative pahse stability, we identified the most
important factors in reducing the phase-transition pressures at uniaxial
compression. We also show that it is possible to have phase transitions occur
only when the phases are under uniaxial compression, in spite of no phase
transition when under hydrostatic commpression. Taking all five phases into
consideration, the phase diagram at uniaxial compression was constructed for
pressures under 20 GPa. The stable phases were found to be diamond, beta-tin
and sh structures, i.e. the same as those when under hydrostatic condition.
According to the phase diagram, direct phase transition from the diamond to the
sh phase is possible if the applied uniaxial pressures, on increasing, satisfy
the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on
increeasing pressures is also possible if the applied uniaxial pressures are
varied from the condition of Px>Pz, on which the phase of sh is stable, to that
of Px<Pz, on which the beta-tin is stable
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
Separable Dual Space Gaussian Pseudo-potentials
We present pseudo-potential coefficients for the first two rows of the
periodic table. The pseudo potential is of a novel analytic form, that gives
optimal efficiency in numerical calculations using plane waves as basis set. At
most 7 coefficients are necessary to specify its analytic form. It is separable
and has optimal decay properties in both real and Fourier space. Because of
this property, the application of the nonlocal part of the pseudo-potential to
a wave-function can be done in an efficient way on a grid in real space. Real
space integration is much faster for large systems than ordinary multiplication
in Fourier space since it shows only quadratic scaling with respect to the size
of the system. We systematically verify the high accuracy of these
pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure
- …
