35 research outputs found

    Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles.

    Get PDF
    Glycogen synthase kinase 3 (GSK3) is a critical enzyme in neuronal physiology; however, it is not yet known whether it has any specific role in presynaptic function. We found that GSK3 phosphorylates a residue on the large GTPase dynamin I (Ser-774) both in vitro and in primary rat neuronal cultures. This was dependent on prior phosphorylation of Ser-778 by cyclin-dependent kinase 5. Using both acute inhibition with pharmacological antagonists and silencing of expression with short hairpin RNA, we found that GSK3 was specifically required for activity-dependent bulk endocytosis (ADBE) but not clathrin-mediated endocytosis. Moreover we found that the specific phosphorylation of Ser-774 on dynamin I by GSK3 was both necessary and sufficient for ADBE. These results demonstrate a presynaptic role for GSK3 and they indicate that a protein kinase signaling cascade prepares synaptic vesicles for retrieval during elevated neuronal activity

    Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry:application to proteins isolated by gel electrophoresis

    No full text
    Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis

    Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    Get PDF
    We have previously shown that peptide amide hydrogens undergo extensive intramolecular migration (i.e., complete hydrogen scrambling) upon collisional activation of protonated peptides (Jørgensen et al. J. Am. Chem. Soc. 2005, 127, 2785–2793). The occurrence of hydrogen scrambling enforces severe limitations on the application of gas-phase fragmentation as a convenient method to obtain information about the site-specific deuterium uptake for proteins and peptides in solution. To investigate whether deprotonated peptides exhibit a lower level of scrambling relative to their protonated counterparts, we have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens (1H/2H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution
    corecore