6 research outputs found
Recommended from our members
Microarray image processing: A novel neural network framework
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Due to the vast success of bioengineering techniques, a series of large-scale analysis tools has been developed to discover the functional organization of cells. Among them, cDNA microarray has emerged as a powerful technology that enables biologists to cDNA microarray technology has enabled biologists to study thousands of genes simultaneously within an entire organism, and thus obtain a better understanding of the gene interaction and regulation mechanisms involved. Although microarray technology has been developed so as to offer high tolerances, there exists high signal irregularity through the surface of the microarray image. The imperfection in the microarray image generation process causes noises of many types, which contaminate the resulting image. These errors and noises will propagate down through, and can significantly affect, all subsequent processing and analysis. Therefore, to realize the potential of such technology it is crucial to obtain high quality image data that would indeed reflect the underlying biology in the samples. One of the key steps in extracting information from a microarray image is segmentation: identifying which pixels within an image represent which gene. This area of spotted microarray image analysis has received relatively little attention relative to the advances in proceeding analysis stages. But, the lack of advanced image analysis, including the segmentation, results in sub-optimal data being used in all downstream analysis methods.
Although there is recently much research on microarray image analysis with many methods have been proposed, some methods produce better results than others. In general, the most effective approaches require considerable run time (processing) power to process an entire image. Furthermore, there has been little progress on developing sufficiently fast yet efficient and effective algorithms the segmentation of the microarray image by using a highly sophisticated framework such as Cellular Neural Networks (CNNs). It is, therefore, the aim of this thesis to investigate and develop novel methods processing microarray images. The goal is to produce results that outperform the currently available approaches in terms of PSNR, k-means and ICC measurements.Aleppo University, Syri
Microarray image processing : a novel neural network framework
Due to the vast success of bioengineering techniques, a series of large-scale analysis tools has been developed to discover the functional organization of cells. Among them, cDNA microarray has emerged as a powerful technology that enables biologists to cDNA microarray technology has enabled biologists to study thousands of genes simultaneously within an entire organism, and thus obtain a better understanding of the gene interaction and regulation mechanisms involved. Although microarray technology has been developed so as to offer high tolerances, there exists high signal irregularity through the surface of the microarray image. The imperfection in the microarray image generation process causes noises of many types, which contaminate the resulting image. These errors and noises will propagate down through, and can significantly affect, all subsequent processing and analysis. Therefore, to realize the potential of such technology it is crucial to obtain high quality image data that would indeed reflect the underlying biology in the samples. One of the key steps in extracting information from a microarray image is segmentation: identifying which pixels within an image represent which gene. This area of spotted microarray image analysis has received relatively little attention relative to the advances in proceeding analysis stages. But, the lack of advanced image analysis, including the segmentation, results in sub-optimal data being used in all downstream analysis methods. Although there is recently much research on microarray image analysis with many methods have been proposed, some methods produce better results than others. In general, the most effective approaches require considerable run time (processing) power to process an entire image. Furthermore, there has been little progress on developing sufficiently fast yet efficient and effective algorithms the segmentation of the microarray image by using a highly sophisticated framework such as Cellular Neural Networks (CNNs). It is, therefore, the aim of this thesis to investigate and develop novel methods processing microarray images. The goal is to produce results that outperform the currently available approaches in terms of PSNR, k-means and ICC measurements.EThOS - Electronic Theses Online ServiceAleppo University, SyriaGBUnited Kingdo
Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach
"(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time
A novel neural network approach to cDNA microarray image segmentation
This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(Ā®) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.This work was funded in part by the National Natural Science Foundation of China under Grants 61174136 and 61104041, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the International Science and Technology Cooperation Project of China under Grant No. 2011DFA12910, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany