25 research outputs found

    Evaluation and application of a new interferometry technique for compressible flow research

    Get PDF
    A new method for obtaining large scale interferograms of flow fields in real time was investigated. The method was based on the point diffraction interferometry technique. The method was modified to accommodate the higher laser power required in recording transonic and supersonic flow fields. Basic tests were conducted in unsteady flows and flows about circulation control airfoils at transonic speeds. It was found that vibration was not a significant factor in the application of the system. In the case of the circulation control airfoils, the real-time viewing allowed the identification of the Coanda jet interaction with the external flow and the shedding of large scale vortices. The method proved to be very sensitive to the optical quality of the wind tunnel windows. The results obtained were compared with earlier interferograms obtained using interferometry. These results were in qualitative agreement

    An experimental investigation of circulation control flow fields using holographic interferometry

    Get PDF
    Experiments are presented which were conducted on flow fields produced by a circulation control airfoil utilizing the Coanda effect at the trailing edge. The application of holographic interferometry to obtain both visualization and quantitative data on the flow field about a circulation control airfoil at transonic flow speed is covered. A brief description of the flow model and measurement techniques is given. The data reduction procedure, results, and interpretation are presented. The results have provided a good deal of information on the character of the flow field, particularly in the neighborhood of the trailing edge. As to the airfoil design, it is apparent that improved performance can be achieved if jet detachment is delayed. Another design improvement would involve the development of an optimum trailing-edge shape for the expected operating Mach and Reynolds number ranges

    Using Laser-Induced Incandescence To Measure Soot in Exhaust

    Get PDF
    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable

    Development of advanced diagnostics for characterization of burning droplets in microgravity

    Get PDF
    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel droplet diameter, droplet regression rate, and the droplet internal temperature profiles or gradients at very high data rates in microgravity experiments

    Weber Number Tests in the NASA Icing Research Tunnel

    Get PDF
    A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 m is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 m is not occurring in the NASA Icing Research Tunnel up to 129 m/s

    Weber Number Tests in the NASA Icing Research Tunnel

    Get PDF
    A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 m is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 m is not occurring in the NASA Icing Research Tunnel up to 129 m/s

    Advances in Imaging Diagnostics for Spray and Particle Research in High-Speed Flows

    No full text
    Measurements of high-pressure sprays and particle fields in high-speed flows have been very challenging for the existing instrumentation. Deformed drops or solid particles significantly limit the range of experimental methods that can be applied for detailed, quantitative measurements. We developed advanced microscope imaging equipment and diagnostic methods to characterize fast-moving droplets or particles. We designed illumination systems based on high-power light-emitting diode (LED) and incoherent laser devices capable of short, intense light pulses. We compared their characteristics and performance separately, as well as their interaction within a complete line-of-sight microscope imaging system. The optical design of the microscope setup was optimized via ray tracing simulations showing high energy losses for LED illumination compared to laser radiation, as confirmed experimentally. The energy transmission measurements provided guidance about the pulse energy density necessary to maximize camera response and signal-to-noise ratio. Characterization testing supported that both illumination systems are valid options for microscopy applications, with an advantage to LED for image quality and resolution performance, but a strong limitation to distance, where the multi-beam laser system demonstrated its superiority
    corecore