38 research outputs found

    Redefinition of the Ilerdian Stage (early Eocene)

    Get PDF
    The Ilerdian Stage was created by Hottinger and Schaub in 1960 to accommodate a significant phase in the evolution of larger foraminifera not recorded in the northern European basins, and has since been adopted by most researchers working on shallow marine early Paleogene deposits of the Tethys domain. One of the defining criteria of the stage is a major turnover of larger foraminifera, marked by the FO’s of Alveolina vredenburgi (formerly A. cucumiformis) and Nummulites fraasi. There is now conclusive evidence that this turnover was coeval with the onset of the Carbon Isotope Excursion (CIE) and, consequently, with the Paleocene-Eocene (P-E) boundary, a temporal correspondence that reinforces the usefulness of the Ilerdian as a chronostratigraphic subdivision of the early Eocene in a regional context. However, in addition to the paleontological criteria, the definition of the Ilerdian was also based on the designation of two reference sections in the southern Pyrenees: Tremp (stratotype) and Campo (parastratotype). In both sections, the base of the stage was placed at the lowest marine bed containing A. vredenburgi specimens. Using the CIE as a correlation tool we demonstrate that these two marine beds occur at different chronological levels, being older in Campo than in Tremp. Further, we show that both beds are in turn younger than the lowest strata with Ilerdian larger foraminifera at the deep-water Ermua section in the Basque Basin (western Pyrenees). Since the age of stage boundaries must be the same everywhere, the choice of these stratotype sections was misleading, since in practice it resulted in the Ilerdian being used as a facies term rather than as a chronostratigraphic unit. To eliminate that conflict, and yet be respectful with established tradition, we propose to redefine the Ilerdian Stage following a procedure similar to the one used by the International Commission on Stratigraphy to establish global chronostratigraphic standards, namely: by using a “silver spike” to be placed in the Tremp section at the base of the Claret Conglomerate, a widespread lithological unit that in the Tremp Graus Basin coincides with the onset of the CIE. The redefined regional Ilerdian Stage becomes thus directly correlatable to the lower part of the global Ypresian Stage, as currently defined by the International Commission on Stratigraphy

    A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime

    No full text
    The Paleocene-Eocene thermal maximum (PETM) is represented in numerous shallow and deep marine sections of the south-central and western Pyrenees by a 2-4 m thick unit (locally up to 20 m) of clays or marly clays intercalated within a carbonate-dominated succession. This unit records a massive input into the Pyrenean Gulf of fine-grained terrestrial siliciclastics, attributed to an abrupt hydrological change during the PETM. However, the nature of such a change remains controversial. Here we show that, in addition to fine-grained deposits, large volumes of coarse-grained siliciclastics were brought into the basin and were mostly accumulated in incised valleys and in a long-lived deep-sea channel. The occurrence of these coarse-grained deposits has been known for some time, but their correlation with the PETM is reported here for the first time. The bulk of the incised valley deposits in the PETM interval are cross-bedded sands and pebbly sands, almost exclusively made of quartz. The criteria for indicting a relation to the PETM include their stratigraphic position between upper Thanetian and lower Ilerdian marine carbonates, organic carbon isotope data, and a high percentage of kaolinite in the clay matrix. The axially flowing deep-sea channel existed throughout Paleocene times in the Pyrenean Basin, within which coarse-grained calciclastic and siliciclastic turbidites were accumulated. This Paleocene succession is capped by thickly bedded quartz sandstones and pebbly sandstones, probably deposited by hyperpycnal flows, which are here assigned to the PETM based on their stratigraphic position and organic carbon isotopic data. The large and simultaneous increase in coarse- and fine-grained terrestrial siliciclastics delivered to the Pyrenean Gulf during the PETM is attributed to an increased intra-annual humidity gradient. During the PETM a longer and drier summer season facilitated the erosion of landscapes, whereas a dramatic enhancement of precipitation extremes during the wet season led to intensified flood events, with rivers carrying greater volumes of both bed and suspended loads. This scenario argues against the possibility that PETM kaolinites indicate a coeval warm and humid climate in northern Spain. Instead, the kaolinite reflects the erosion of thick Cretaceous lateritic profiles developed on the Hercynian basement

    Understanding carbonate factories through palaeoecological and sedimentological signals. Tribute to Luis Pomar

    No full text
    The carbonate factories, their controlling factors and their palaeoecological and sedimentological signals recorded in sedimentary successions are key elements for understanding the evolution of carbonate platform systems. Luis Pomar has dedicated most of his academic life to the study of carbonate rocks and carbonate factories. The idea for this special issue to celebrate Pomar’s career arose during a session at the 34th International Association of Sedimentologists meeting held in Rome, entitled ‘Understanding carbonate factories through palaeoecological and geochemical signals’. The proposal encountered great response among participants, and additional contributions followed an email invitation to other specialists. This issue contains a variety of papers on carbonate sedimentology and carbonate factories. Here, an introduction that contextualizes the papers and key concepts discussed in this thematic issue is provided. It reviews Luis Pomar’s major achievements in carbonate sedimentology and discusses the evolution of the concept of the carbonate factory and the series of palaeoecological and sedimentological signals used to characterize the wide spectrum of carbonate depositional systems found in the natural world

    High-resolution intra- and interbasinal correlation of the Danian–Selandian transition (Early Paleocene): The Bjala section (Bulgaria) and the Selandian GSSP at Zumaia (Spain)

    No full text
    The Danian–Selandian (D–S) boundary has been identified for the first time in the Black Sea coast at Bjala (Bulgaria) based on a new integrated bio-, magneto- and cyclostratigraphic study. Several correlation criteria as established for the basal Selandian GSSP from Zumaia (Basque Basin) are evaluated. Noteworthy, is the almost complete lack of calcareous nannoplankton species Braarudosphaera bigelowi in the Bulgarian sections, a sharp decrease of which was indicated as suitable criteria for defining the D–S boundary as it occurred both at Zumaia and in the classical locations of the North Sea basin. Conversely, the second evolutionary radiation of the calcareous nannofossil genus Fasciculithus together with the occurrence of Fasciculithus tympaniformis that define the NP4/NP5 zonal boundary seem to be reliable criteria to approximate the D–S boundary. In detail, however, the best approach is to integrate biostratigraphic data within a magnetostratigraphic and/or cyclostratigraphic framework. Refinements on the placement of chron C27n at Zumaia and robust bed-by-bed correlation between several Basque sections and Bjala indicates that the D–S boundary is located 30 precession cycles (~630 ky) above C27n. In addition to the precession-related marl–limestone couplets and 100-ky eccentricity bundles recognized in the studied sections, expression of the stable 405-ky long eccentricity allows direct tuning to the astronomical solutions. A correlation of the land-based sections with previously tuned data from ODP Site1262 from the Southern Atlantic is challenged. Our choice is consistent with original tuning at Zumaia but shifts one 100-ky cycle older previous tuning from Site 1262 along the interval above C27n. Under the preferred tuning scheme the D–S boundary can be given an age of 61.641± 0.040 Ma on the La04 orbital solution.Published511-5332.2. Laboratorio di paleomagnetismoJCR Journalrestricte

    High-resolution intra- and interbasinal correlation of the Danian–Selandian transition (Early Paleocene): The Bjala section (Bulgaria) and the Selandian GSSP at Zumaia (Spain)

    No full text
    The Danian–Selandian (D–S) boundary has been identified for the first time in the Black Sea coast at Bjala (Bulgaria) based on a new integrated bio-, magneto- and cyclostratigraphic study. Several correlation criteria as established for the basal Selandian GSSP from Zumaia (Basque Basin) are evaluated. Noteworthy, is the almost complete lack of calcareous nannoplankton species Braarudosphaera bigelowi in the Bulgarian sections, a sharp decrease of which was indicated as suitable criteria for defining the D–S boundary as it occurred both at Zumaia and in the classical locations of the North Sea basin. Conversely, the second evolutionary radiation of the calcareous nannofossil genus Fasciculithus together with the occurrence of Fasciculithus tympaniformis that define the NP4/NP5 zonal boundary seem to be reliable criteria to approximate the D–S boundary. In detail, however, the best approach is to integrate biostratigraphic data within a magnetostratigraphic and/or cyclostratigraphic framework. Refinements on the placement of chron C27n at Zumaia and robust bed-by-bed correlation between several Basque sections and Bjala indicates that the D–S boundary is located 30 precession cycles (~630 ky) above C27n. In addition to the precession-related marl–limestone couplets and 100-ky eccentricity bundles recognized in the studied sections, expression of the stable 405-ky long eccentricity allows direct tuning to the astronomical solutions. A correlation of the land-based sections with previously tuned data from ODP Site1262 from the Southern Atlantic is challenged. Our choice is consistent with original tuning at Zumaia but shifts one 100-ky cycle older previous tuning from Site 1262 along the interval above C27n. Under the preferred tuning scheme the D–S boundary can be given an age of 61.641± 0.040 Ma on the La04 orbital solution

    Closing the Mid- Paleocene gap: toward a complete astronomically tuned Paleocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W Pyrenees)

    No full text
    An integrated magneto-, bio- and cyclostratigraphic framework is presented for the Mid-Palaeocene interval from the (hemi) pelagic sea-cliff section of Zumaia in the Basque basin. The new ∼55 m long studied section expands about 3.5 Myr and closes the gap between previously published integrated studies in the section. The occurrence of magnetochron C26n is now documented, and its duration (complemented also by data from the Ibaeta section), and that for chrons C26r and C25r is estimated by counting precession related lithologic couplets assigned to have 21-kyr duration (C25r=∼1449 kyr, C26n=∼231 kyr, C26r=∼2877 kyr). Consequently, the Zumaia section now provides the first complete Palaeocene astronomically derived chronology, rendering this section a master reference section. Due to limitations in the orbital calculations and uncertainties in the radiometric dating method no robust tuning and absolute ages can be given for the moment. However, the FOs (First Occurrences) of key calcareous plankton species and the Mid Palaeocene Biotic Event (MPBE) are placed within the magnetostratigraphic and cyclostratigraphic template along the studied Mid-Palaeocene interval. In addition, the dataset provides the key elements for a proper settling of the Thanetian and Selandian Global Stratotype Section and Point (GSSPs), which is one of the primary objectives of the ICS (International Commission of Stratigraphy). We consider the base of chron C26n and the criteria associated to the lithostratigraphic change between the Danian Limestone Fm and the Itzurun marl Fm at Zumaia, as the respective delimiting points for the Thanetian and Selandian bases as recently agreed by the Paleocene Working Group of the International Subcommission of the Paleogene Stratigraphy of the ICS. Consequently, the duration of the Thanetian, Selandian and Danian component stages can be estimated at Zumaia to be about ∼3129 kyr, ∼2163 kyr and ∼4324 kyr respectively (see text for error considerations). However, the MPBE located 8 precession cycles below the base of C26n in correspondence to a short eccentricity maxima at Zumaia, could also serve as a guiding criteria to approximate or redefine the Thanetian base if this level demonstrated synchronous.Published450–4672.2. Laboratorio di paleomagnetismoJCR Journalreserve

    The “Urbasa” type flint. Main petrological and geochemical features of a litologhic marker in late Pleistocene and earliest Holocene archaeological sites

    Get PDF
    43ª Sesión Científica. Móstoles, Noviembre de 2007The “Urbasa” flint, which occurs intercalated within shallow-water limestones of Thanetian (upper Paleocene) age was one of the best and most used flint sources during the Prehistoric times in the Basque-Cantabrian area. Two of the main outcrops/quarries where the “Urbasa” flint was exploited are located in the Urbasa ridge (W Navarra). The analysis of the compositional texture, mineralogy and geochemical features has revealed that the “Urbasa” flint is highly pure and of fine-grained texture, but with high contents of moganite, traces of organic matter and, less frequently, carbonates and clay.Peer reviewe
    corecore