36 research outputs found

    Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain

    Get PDF
    Climate change represents a serious threat to life in earth. Agriculture releases significant emissions of greenhouse gases (GHG), but also offers low-cost opportunities to mitigate GHG emissions. This paper assesses agricultural GHG emissions in Aragon, one important and representative region for agriculture in Spain. The Marginal Abatement Cost Curve (MACC) approach is used to analyze the abatement potential and cost-efficiency of mitigation measures under several scenarios, with and without taking into account the interaction among measures and their transaction costs. The assessment identifies the environmental and economic outcomes of different combinations of measures, including crop, livestock and forest measures. Some of these measures are win-win, with pollution abatement at negative costs to farmers. Moreover, we develop future mitigation scenarios for agriculture toward the year 2050. Results highlight the trade-offs and synergies between the economic and environmental outcomes of mitigation measures. The biophysical processes underlying mitigation efforts are assessed taking into account the significant effects of interactions between measures. Interactions reduce the abatement potential and worsen the cost-efficiency of measures. The inclusion of transaction costs provides a better ranking of measures and a more accurate estimation of implementation costs. The scenario analysis shows how the combinations of measures could reduce emissions by up to 75% and promote sustainable agriculture in the future

    Hydroeconomic modeling for assessing water scarcity and agricultural pollution abatement policies in the Ebro River Basin, Spain

    Get PDF
    Water scarcity and water quality degradation are major problems in many basins across the world, especially in arid and semiarid regions. The severe pressures on basins are the consequence of the intensification of food production systems and the unrelenting growth of population and income. Agriculture is a major factor in the depletion and degradation of water resources, and contributes to the emissions of greenhouse gases (GHG). Our study analyzes water allocation and agricultural pollution into watercourses and the atmosphere, with the purpose of identifying cost-effective policies for sustainable water management in the Ebro River Basin (Spain). The study develops an hydroeconomic model that integrates hydrological, economic and water quality aspects, capturing the main spatial and sectoral interactions in the basin. The model is used to analyze water scarcity and agricultural pollution under normal and droughts conditions, providing information for evaluating mitigation and adaptation policies. Results indicate that drought events increase nitrate concentration by up to 63% and decrease water availability by 42% at the mouth of Ebro River, highlighting the tradeoffs between water quantity and quality. All mitigation and adaptation policies reduce the effects of climate change, improving water quality and reducing GHGs’ emissions, thus lowering environmental damages and enhancing social well-being. Manure fertilization and optimizing the use of synthetic fertilizers are important cost-effective policies increasing social benefits in a range between 50 and 160 million Euros. Results show that irrigation modernization increases the efficient use of nitrogen and water, augmenting social benefits by up to 90 million Euros, and enlarging stream flows at the river mouth. In contrast, manure treatment plants reduce private and social benefits even though they achieve the lowest nitrate concentrations. Our study provides insights on the synergies and tradeoffs between environmental and economic objectives. Another finding is that drought conditions decrease the effectiveness of policies, and increase the tradeoffs between water availability and nitrate pollution. The results contribute to the discussion of designing cost-effective policies for the abatement of agricultural polluting emissions into water and the atmosphere

    Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin

    Get PDF
    Reducing water scarcity requires both mitigation of the increasing water pollution and adaptation to the changing availability and demand of water resources under global change. However, state-of-the-art water scarcity modeling efforts often ignore water quality and associated biogeochemical processes in the design of water scarcity reduction measures. Here, we identify cost-effective options for reducing future water scarcity by accounting for water quantity and quality in the highly water stressed and polluted Pearl River Basin in China under various socio-economic and climatic change scenarios based on the Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Our modeling approach integrates a nutrient model (MARINA-Nutrients) with a cost-optimization procedure, considering biogeochemistry and human activities on land in a spatially explicit way. Results indicate that future water scarcity is expected to increase by a factor of four in most parts of the Pearl River Basin by 2050 under the RCP8.5-SSP5 scenario. Results also show that water quality management options could half future water scarcity in a cost-effective way. Our analysis could serve as an example of water scarcity assessment for other highly water stressed and polluted river basins around the world and inform the design of cost-effective measures to reduce water scarcity

    Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors

    Get PDF
    V.F. acknowledges a UQ Postdoctoral Fellowship. This work was supported by the Australian Research Council Grant DP110100539. The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (The University of Queensland). The Ghent University Special Research Fund (BOF) is acknowledged for the postdoctoral grant of M.N.B

    Achieving energy efficiency in data centers with a performance-guaranteed power aware routing

    No full text
    Nowadays, data centers are designed to offer the highest performance in case of high traffic load and peak utilisation of the network. However, in a realistic data center environment, the peak capacity of the network is rarely reached and the average utilisation of devices varies between 5% and 25% which results into a huge loss of energy since most of the time links and servers are idle or under-utilized. The high impact of this wasted power on environmental effects, energy needs and electricity costs raised the concerns to seek for an efficient solution to make data centers more power effective while keeping the desired quality of service. In this paper, we propose a power-aware routing algorithm that saves a considerable amount of energy with a negligible trade-off on the performance of the network and a guaranteed reliability of the system. The key idea is to keep active only the vital and critical nodes participating in the communication traffic and ensuring the reliability while the unneeded devices are turned-off. Vital nodes between clusters (parts of the network) are calculated only once during the initialization of the system and consequently used with a constant time complexity. Besides its short computation time, our routing algorithm guarantees over 50% of energy saving by maintaining the minimum number of needed devices and over 20% when adding backup routes. This power efficiency is accompanied by a guaranteed performance and reliability against failures. 1 2017 Elsevier B.V.Scopu

    PTNet: An efficient and green data center network

    No full text
    In recent years, data centers have witnessed an exponential growth for hosting hundreds of thousands of servers as well as to accommodating a very large demand for resources. To fulfill the required level of demand, some approaches tackled network aspects so to host a huge number of servers while others focused on delivering rapid services to the clients by minimizing the path length between any two servers. In general, network devices are often designed to achieve 1:1 oversubscription. Alternatively, in a realistic data center environment, the average utilization of a network could vary between 5% and 25%, and thus the energy consumed by idle devices is wasted. This paper proposes a new parameterizable data center topology, called PTNet. PTNet offers a gradual scalability that interconnects small to large networks covering different ranges of sizes. This new interconnection network provides also a small path length between any two servers even in large sized data centers. PTNet does not only reduce path length and latency, it also uses a power-aware routing algorithm which saves up to 40% of energy with an acceptable computation time. In comparison to existing solutions (e.g. Flatnet, BCube, DCell and Fat-tree), PTNet shows substantial improvements in terms of capacity, robustness, cost-effectiveness and power efficiency: this improvement reaches up to 50% in some cases.Scopu

    Connectivity Restoration and Amelioration in Wireless Ad-Hoc Networks: A Practical Solution

    No full text
    International audienceConnectivity restoration after a node failure is one of the major issues in wireless ad-hoc networks. In particular, failures can lead to a network partitioning and a huge loss of information. Therefore, a fast mechanism is needed to heal the network between the partitions. In this paper, we consider the scenario where an intermediate node failures and a mobile system is moving autonomously to restore connectivity and provide the best service. We propose a fast connectivity restoration algorithm that is based only on local information. We implement our solution on a real robotic platform and we present some experimental results using a simple case scenario

    Managing climate risks: new evidence from integrated analysis at the basin scale

    No full text
    Safe, reliable, and equitable water access is critical for healthy livelihoods. Climate change-related water stress is challenging, and using the Water-Energy-Food-Ecosystems (WEFE) nexus is an appealing approach for sustainable management. The contribution of this paper is formulating a comprehensive framework integrating water sectors and ecosystems. The paper fills previous gaps in the literature by taking Spain’s Ebro Basin as a case study for evidence to guide science-based policies. Results deliver a framework for measuring the distribution of benefits and costs among sectors and stakeholders. Findings reveal choices that increase stream flows, enhance water security and biodiversity, and reduce climate risks. © 2024 Informa UK Limited, trading as Taylor & Francis Group
    corecore