118 research outputs found

    Did giraffe cardiovascular evolution solve the problem of heart failure with preserved ejection fraction?

    Get PDF
    The evolved adaptations of other species can be a source of insight for novel biomedical innovation. Limitations of traditional animal models for the study of some pathologies are fueling efforts to find new approaches to biomedical investigation. One emerging approach recognizes the evolved adaptations in other species as possible solutions to human pathology. The giraffe heart, for example, appears resistant to pathology related to heart failure with preserved ejection fraction (HFpEF)-a leading form of hypertension-associated cardiovascular disease in humans. Here, we postulate that the physiological pressure-induced left ventricular thickening in giraffes does not result in the pathological cardiovascular changes observed in humans with hypertension. The mechanisms underlying this cardiovascular adaptation to high blood pressure in the giraffe may be a bioinspired roadmap for preventive and therapeutic strategies for human HFpEF

    Threshold effects in excited charmed baryon decays

    Get PDF
    Motivated by recent results on charmed baryons from CLEO and FOCUS, we reexamine the couplings of the orbitally excited charmed baryons. Due to its proximity to the [Sigma_c pi] threshold, the strong decays of the Lambda_c(2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in Lambda_{c1}-> Lambda_c pi^+pi^- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the Lambda_c(2593) mass and couplings. We perform a fit to unpublished CLEO data which gives M(Lambda_c(2593)) - M(Lambda_c) = 305.6 +- 0.3 MeV and h2^2 = 0.24^{+0.23}_{-0.11}, with h2 the Lambda_{c1}-> Sigma_c pi strong coupling in the chiral Lagrangian. We also comment on the new orbitally excited states recently observed by CLEO.Comment: 9 pages, 3 figure

    Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition

    Get PDF
    Action recognition in videos is a challenging task due to the complexity of the spatio-temporal patterns to model and the difficulty to acquire and learn on large quantities of video data. Deep learning, although a breakthrough for Image classification and showing promise for videos, has still not clearly superseded action recognition methods using hand-crafted features, even when training on massive datasets. In this paper, we introduce hybrid video classification architectures based on carefully designed unsupervised representations of hand-crafted spatio-temporal features classified by supervised deep networks. As we show in our experiments on five popular benchmarks for action recognition, our hybrid model combines the best of both worlds: it is data efficient (trained on 150 to 10000 short clips) and yet improves significantly on the state of the art, including recent deep models trained on millions of manually labelled images and videos

    Online Continual Learning on Sequences

    Full text link
    Online continual learning (OCL) refers to the ability of a system to learn over time from a continuous stream of data without having to revisit previously encountered training samples. Learning continually in a single data pass is crucial for agents and robots operating in changing environments and required to acquire, fine-tune, and transfer increasingly complex representations from non-i.i.d. input distributions. Machine learning models that address OCL must alleviate \textit{catastrophic forgetting} in which hidden representations are disrupted or completely overwritten when learning from streams of novel input. In this chapter, we summarize and discuss recent deep learning models that address OCL on sequential input through the use (and combination) of synaptic regularization, structural plasticity, and experience replay. Different implementations of replay have been proposed that alleviate catastrophic forgetting in connectionists architectures via the re-occurrence of (latent representations of) input sequences and that functionally resemble mechanisms of hippocampal replay in the mammalian brain. Empirical evidence shows that architectures endowed with experience replay typically outperform architectures without in (online) incremental learning tasks.Comment: L. Oneto et al. (eds.), Recent Trends in Learning From Data, Studies in Computational Intelligence 89

    Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion

    Get PDF
    The masses of the negative parity SU(6) 70-plet baryons are analyzed in the 1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this level of precision there are twenty predictions. Among them there are the well known Gell-Mann Okubo and equal spacing relations, and four new relations involving SU(3) breaking splittings in different SU(3) multiplets. Although the breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be small. The dominant source of the breaking is the hyperfine interaction which is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is entirely fixed by the splitting between the singlet states Lambda(1405) and Lambda(1520), and the spin-orbit puzzle is solved by the presence of other zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure

    Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-ischemic dilated cardiomyopathy (DCM) is the most common cardiomyopathy worldwide, with significant mortality. Correct evaluation of the patient's myocardial function has important clinical significance in the diagnosis, therapeutic effect assessment and prognosis in non-ischemic DCM patients. This study evaluated the feasibility of three-dimensional speckle tracking imaging (3D-STE) for assessment of the left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy (DCM).</p> <p>Methods</p> <p>Apical full-volume images were acquired from 65 patients with non-ischemic DCM (DCM group) and 59 age-matched normal controls (NC group), respectively. The following parameters were measured by 3D-STE: the peak systolic radial strain (RS), circumferential strain (CS), longitudinal strain (LS) of each segment. Then all the parameters were compared between the two groups.</p> <p>Results</p> <p>The peak systolic strain in different planes had certain regularities in normal groups, radial strain (RS) was the largest in the mid region, the smallest in the apical region, while circumferential strain (CS) and longitudinal strain (LS) increased from the basal to the apical region. In contrast, the regularity could not be applied to the DCM group. RS, CS, LS were significantly decreased in DCM group as compared with NC group (<it>P </it>< 0.001 for all). The interobserver, intraobserver and test-retest reliability were acceptable.</p> <p>Conclusions</p> <p>3D-STE is a reliable tool for evaluation of left ventricular myocardial strain in patients with non-ischemic DCM, with huge advantage in clinical application.</p

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication

    T1 Mapping for the Diagnosis of Acute Myocarditis Using CMR: Comparison to T2-Weighted and Late Gadolinium Enhanced Imaging

    Get PDF
    Objectives This study sought to test the diagnostic performance of native T1 mapping in acute myocarditis compared with cardiac magnetic resonance (CMR) techniques such as dark-blood T2-weighted (T2W)-CMR, bright-blood T2W-CMR, and late gadolinium enhancement (LGE) imaging. Background The diagnosis of acute myocarditis on CMR often requires multiple techniques, including T2W, early gadolinium enhancement, and LGE imaging. Novel techniques such as T1 mapping and bright-blood T2W-CMR are also sensitive to changes in free water content. We hypothesized that these techniques can serve as new and potentially superior diagnostic criteria for myocarditis. Methods We investigated 50 patients with suspected acute myocarditis (age 42 ± 16 years; 22% women) and 45 controls (age 42 ± 14 years; 22% women). CMR at 1.5-T (median 3 days from presentation) included: 1) dark-blood T2W-CMR (short-tau inversion recovery); 2) bright-blood T2W-CMR (acquisition for cardiac unified T2 edema); 3) native T1 mapping (shortened modified look-locker inversion recovery); and 4) LGE. Image analysis included: 1) global T2 signal intensity ratio of myocardium compared with skeletal muscle; 2) myocardial T1 relaxation times; and 3) areas of LGE. Results Compared with controls, patients had significantly higher global T2 signal intensity ratios by dark-blood T2W-CMR (1.73 ± 0.27 vs. 1.56 ± 0.15, p < 0.01), bright-blood T2W-CMR (2.02 ± 0.33 vs. 1.84 ± 0.17, p < 0.01), and mean myocardial T1 (1,010 ± 65 ms vs. 941 ± 18 ms, p < 0.01). Receiver-operating characteristic analysis showed clear differences in diagnostic performance. The areas under the curve for each method were: T1 mapping (0.95), LGE (0.96), dark-blood T2 (0.78), and bright-blood T2 (0.76). A T1 cutoff of 990 ms had a sensitivity, specificity, and diagnostic accuracy of 90%, 91%, and 91%, respectively. Conclusions Native T1 mapping as a novel criterion for the detection of acute myocarditis showed excellent and superior diagnostic performance compared with T2W-CMR. It also has a higher sensitivity compared with T2W and LGE techniques, which may be especially useful in detecting subtle focal disease and when gadolinium contrast imaging is not feasible
    corecore