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A B S T R A C T

The evolved adaptations of other species can be a source of insight for novel biomedical innovation.

Limitations of traditional animal models for the study of some pathologies are fueling efforts to find

new approaches to biomedical investigation. One emerging approach recognizes the evolved adapta-

tions in other species as possible solutions to human pathology. The giraffe heart, for example,

appears resistant to pathology related to heart failure with preserved ejection fraction (HFpEF)—a

leading form of hypertension-associated cardiovascular disease in humans. Here, we postulate that

the physiological pressure-induced left ventricular thickening in giraffes does not result in the patho-

logical cardiovascular changes observed in humans with hypertension. The mechanisms underlying

this cardiovascular adaptation to high blood pressure in the giraffe may be a bioinspired roadmap for

preventive and therapeutic strategies for human HFpEF.
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INTRODUCTION

Bioinspired medicine

Evolutionary medicine has emerged as a powerful lens through

which we can better understand the nature and origins of

human pathology. Evolutionary perspectives can also accelerate

biomedical innovation. The emerging field of biomimicry can

serve as a source of novel approaches to human pathophysi-

ology [1]. Bioinspired medicine (or biomimicry) recognizes the

physiologic differences across species as a source of solutions

to challenges encountered by the evolutionary ancestors of ex-

tant individuals.

Biodiversity arises as organisms facing different challenges

and opportunities evolve into phenotypes which are better

aligned with their environments. Thus, the physiologic adapta-

tions of other species may be conceived of as solutions to these

challenges and optimized responses to opportunity. As such,

contained within the biodiversity of physiologies of other spe-

cies on the planet may be countless solutions to physiologic

challenges to human health.

Outside the field of medicine, biomimicry has been a source

of solutions for problems from biofouling [2] to architectural in-

stability [3]. Natural phenomena can serve as an inspiration for

the creation of structures, products, services, and solutions.

Among the earliest and most well-known commercial applica-

tions of biomimicry was the invention of Velcro by Swiss engin-

eer George de Mestral, which was inspired by Mestral’s

observations that the burrs of the burdock plant stuck to his

clothes and dog’s fur [4]. Since the inception of Velcro in the

early 1940s, there has been a steep increase in biomimicry re-

search for a wide range of applications. While invertebrates

have proven to be a rich source of bioinspired insights, from

surgical glue inspired by the natural adhesive of bivalve mussels

[5] to mosquito-inspired microneedles and microprobe

implants [6, 7], vertebrates have also inspired a broad range of

innovations in locomotion, flight technology, defense systems,

and many other fields [8–10]. In addition to technological inno-

vations, biomimicry has accelerated the development of prod-

ucts directly related to human health, such as antibacterial and

sunscreen activities from the gel-like red sweat of the hippopot-

amus [11], antimicrobial surfaces that mimic shark skin [12], ro-

botic limb design for prosthetics based on marine species [13],

and bioinspired methods of drug delivery [14].

Comparative medicine involving traditional animal models

with vulnerability to human pathology has provided many

insights. However, limitations associated with traditional ani-

mal models are fueling efforts to find novel approaches [15].

Bioinspired approaches which draw parallels between patho-

logical conditions in humans and analogous, non-pathological

systems in other animals have the potential to yield insights

and innovations traditional methods have not.

Evolved adaptations: finding solutions for a leading cause

of heart failure

Cardiovascular disease (CVD) is the leading cause of death in

the USA, killing one person every 37 s [16]. Heart failure (HF)—

the leading reason for hospitalization in patients over 65 years

of age in the USA—is a chronic progressive form of CVD that is

characterized by the heart’s inability to pump sufficient blood to

meet the requirements of the body. HF syndromes are often

grouped together based on whether the left ventricular (LV)

ejection fraction (EF) is preserved (HFpEF) or reduced (HFpEF)

[17]. Heart failure with preserved ejection fraction (HFpEF)

accounts for half of all human HF diagnoses and has an esti-

mated 5-year survival of only 38% [18]. While advances in both

pharmacologic and device-based therapies over the past four

decades have significantly lowered mortality and morbidity in

patients with reduced LV ejection fraction [19], despite signifi-

cant research investment, similar progress has yet to be made

in treating HFpEF.

HFpEF pathophysiology

The mammalian heart displays a high degree of plasticity in

order to adapt to changes in environmental conditions and

increased workload. Cardiac remodeling—the ability of the

heart to adapt to increased workload demand by undergoing

changes in size, shape, structure and function—is a vital adap-

tive feature of the mammalian heart [20]. In humans, ventricular

hypertrophy, a form of cardiac remodeling, may develop as a

physiologic (non-pathologic) response to exercise, develop-

ment, and/or pregnancy [20, 21]. Pathologic ventricular hyper-

trophy develops in response to volume or pressure overload

with an eccentric form (# in LV wall thickness, " in LV cavity

size) typically linked to volume overload and concentric hyper-

trophy (" in LV wall thickness, # or no change in LV cavity size)

associated with pressure overload [20, 22, 23].

Pathologic concentric LV hypertrophy in humans commonly

occurs as a physiologic response to longstanding poorly con-

trolled systemic hypertension and/or significant aortic stenosis.

As predicted by the Law of Laplace (i.e. the tension within the

wall of a sphere is directly proportional to the thickness of the

sphere), the individual’s LV thickens to alleviate increased wall

stress as afterload (the resistance the heart must overcome to

eject blood during systole) increases with rising blood pressure

or progressively decreasing aortic valve outflow area [24].

As the LV thickens to contain wall stress, the relative size of

the ventricular cavity decreases [20–23, 25, 26]. Pathologic car-

diac remodeling is associated with numerous pathophysiologic

changes including increased cell death and diffuse interstitial

collagen fiber deposition [20, 25, 26]. Fibrosis and other related

processes underlie the increased ventricular stiffness (i.e.
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reduced compliance) which contributes to the impaired exercise

tolerance and other clinical symptoms of HFpEF [20, 27, 28].

A proposed model of resistance to HFpEF

Despite the cadre of bioinspired examples from outside the field

of medicine, there have been few efforts to apply biomimicry to

key challenges in human health including CVDs such as HFpEF.

While multiple conditions (e.g. obesity, coronary artery disease,

diabetes, and chronic kidney disease) are associated with

HFpEF, systemic hypertension usually plays a central role in the

pathology [29]. A lack of suitable animal models has been iden-

tified as one source of limited therapeutic innovation in HFpEF

[30]. The identification of nonhuman animals with evolved re-

sistance to the adverse effects of hypertension on the human

myocardium could spark much needed innovation in research.

We hypothesize that evolved cardiovascular adaptation in gir-

affe protect its ventricles from the pathologic changes associ-

ated with systemic hypertension leading to HFpEF in humans.

Giraffe cardiovascular system

The giraffe, Giraffa spp., is the world’s tallest animal and stands

at over 5.5 m tall. Giraffes diverged from their closest extant

relative, the okapi, approximately 10–12 million years ago

(Fig. 1) [31]. While the okapi is similar in body shape, it lacks

the ironically long neck of the giraffe. The giraffe’s long neck is

hypothesized to have evolved to allow greater access to high fo-

liage, to enhance predator detection, and to influence sexual se-

lection [32].

In giraffe, the lengthening of the neck over the course of devel-

opment and general somatic growth substantially increases the

vertical distance between the heart and the brain. This vertical

distance may exceed 2.5 m/s. The need to maintain adequate

cerebral perfusion with progressive neck lengthening during de-

velopment leads to increasing systolic blood pressures; systolic

blood pressures in healthy adult giraffe fall between 200 and

300 mmHg at the level of the heart [33]. Healthy adult giraffe

blood pressures are more than twice that of humans and other

mammals as a function of body mass [34]. While substantially

hypertensive by non-giraffe mammalian standards, these pres-

sures are not only normal for giraffe, they are crucial for the

hemodynamic performance of the species [33–38].

The thickness of the giraffe ventricle at birth is comparable to

what has been observed in other newborn mammals [35].

However, as the neck lengthens and blood pressure increases

to maintain cerebral perfusion, the LV and interventricular walls

develop concentric thickening (i.e. hypertrophy) [33, 35]. As pre-

dicted by the Law of Laplace, the giraffe’s LV thickens to allevi-

ate increased wall stress as afterload increases concomitantly

with neck length [24]. The gross LV morphology of the giraffe

shares many characteristics with that of other mammals.

However, the relationship between LV wall thickness and cavity

size in modern giraffes does not follow the typical patterned re-

lationship observed in other mammals [35, 39, 40]. Most not-

ably, the volume of the LV cavity in the adult giraffe is smaller

than expected relative to other species, especially in compari-

son to the relative thickness of its ventricular wall [33, 34]. A

comparable ratio in humans is typically associated with hemo-

dynamic impairment and clinical symptomology, especially dur-

ing exercise (Fig. 2).

Figure 1. Evolutionary divergence of the giraffe from the okapi and other mammals. Created using the Interactive Tree of Life [31].
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Are cardiovascular adaptations in giraffes a naturally

occurring model of resistance to heart failure with

preserved ejection fraction (HFpEF)?

While concentric LV hypertrophy in humans is associated with

cellular and subcellular changes leading to increased ventricular

stiffness, reduced exercise tolerance, and HFpEF, giraffe cardio-

vascular physiology does not follow this pattern. Giraffe appear

to have evolved an adaptation protecting hypertrophic ventricle

from these changes and from progression to HFpEF [25].

Predation risk may be the basis of the selective pressure

underlying this adaptation. Giraffe are a prey species and to

evade capture and death they must be able to flee predators at

speeds of up to 60 km h�1 [41]. Thus, their survival, and ultim-

ately fitness, depend on maintaining maximal exercise capacity

in order to escape predators. If the increased afterload

associated with increased neck length and concentric LV hyper-

trophy also induced the myocardial changes, which compro-

mised exercise capacity (as is seen in humans with HFpEF), the

fitness benefits of the increased neck length might be counter-

balanced by increased risk of predation. In humans with

HFpEF, increasing heart rates reduce relative diastolic filling

times which leads to increased pulmonary pressures and HF

symptoms. During flight from predators, increased myocardial

oxygen demand contributes to rising heart rates and reduced

diastolic filling times without apparent adverse effects on pul-

monary pressures. Although hemodynamic measurements of

giraffes exercising at maximum capacity are not presently avail-

able, a 1966 study that measured the cardiovascular responses

of wild East African giraffes running to avoid capture recorded

heart rates of up to 170 bpm via radiotelemetry [37].

Figure 2. Comparison of the response of the left ventricle of the giraffe to increasing hypertension over the course of development vs. the ventricular response

to chronic hypertension in humans. In both cases, hypertension leads to thickening (i.e. hypertrophy) of the left ventricular wall. Hypertension-induced left

ventricular thickening (LVT) in humans leads to cardiac pathologies such as fibrosis, and commonly heart failure with preserved ejection fraction (HFpEF).

However, developmental pressure-induced LVT in growing giraffes does not compromise exercise capacity, which is an important adaptation this prey spe-

cies. HFpEF, heart failure with preserved ejection fraction.
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Giraffe cardiovascular physiology has particular salience for

human HFpEF. The giraffe heart appears to be an example of a

mammalian heart in which pressure-induced concentric ven-

tricular thickening does not appear to reduce exercise capacity

as is the case with pressure-induced concentric ventricular

thickening and HFpEF in humans [28, 42]. We hypothesize that

evolved adaptations in the giraffe myocardia prevent elevation

in LV diastolic pressures that are observed in humans with

HFpEF and magnified with exercise-associated tachycardia.

Figure 3 compares the advanced hemodynamic consequences

of pathological hypertension-induced hypertrophy seen with

HFpEF in human with the adaptive physiological concentric LV

hypertrophy that we hypothesize exists in the normal adult gir-

affe heart.

Potential mechanisms

The cellular and subcellular processes that protect giraffe hearts

from the adverse consequences of systemic hypertension and

pressure-induced LV thickening are largely unknown. However,

several candidate mechanisms are providing new insights in to

these evolved adaptations. For example, cardiac fibrosis—a

pathological process associated with systemic hypertension

and HFpEF in humans, appears to be relatively suppressed in

giraffe despite comparable levels of ventricular thickening [34].

Likewise, our preliminary data from reviewing 136 necropsy

reports suggests a reduced propensity for myocardial fibrosis in

the giraffe relative to humans and other mammalian species

[43].

Consistent with our observations, reduced fibrosis in giraffe

myocardia may be linked to differences in the amino acid se-

quence of the ACE protein [32, 44], as well as recently identified

mutations in fibroblast growth factor receptor-like 1 (FGFRL1)

[32, 45]. Notably, the FGFRL1 protein sequence in giraffe

appears to be highly divergent in comparison to a diverse array

of other mammals, with seven amino acid substitutions in a re-

gion that is crucial for FGF binding. In addition, a comparison

of the giraffe genome to that of its closest living evolutionary

relative, the okapi, identified 70 genes with ‘multiple signs of

adaptation’ that were not observed in other eutherian mammals

[32], five of which are found within the developmental pathways

that lead to cardiac fibrosis [43].

Figure 3. Comparison of gross ventricular anatomy in the healthy human adult heart, human heart failure, and healthy adult giraffe hearts and their relation-

ships to left atrial and ventricular pressure. Despite significant pressure-induced left ventricular thickening (LVT), giraffe cardiac pressures do not display the

elevated left atrial and ventricular pressures observed in humans with severe hypertension-induced LVT. Giraffe ventricular pressures adapted from Smerup

et al. [33]. HFpEF, heart failure with preserved ejection fraction.
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In the recently published study by Liu et al. [45], mouse

FGFRL1 was edited to contain the seven amino acid substitu-

tions of giraffe FGFRL1 using CRISPR-Cas9 technology. The mu-

tant mice with giraffe-type FGFRL1 exhibited improved heart

function and significantly less fibrosis in cardiac and renal tis-

sues than wild-type mice in response to infusion with angioten-

sin II, indicating a role for FGFRL1 in suppressing fibrosis in

the physiological setting of hypertension. Furthermore, the po-

tential roles of micro RNAs in the post-transcriptional regula-

tion of ACE, ACE2, FGFRL1 and other relevant genes during

cardiac remodeling further underscore the need to elucidate the

underlying mechanisms of different cardiac phenotypes [23, 46].

Lastly, other genes involved in the regulation of fibrosis, as well

as processes contributing to diastolic impairment in humans

(i.e. autonomic regulation, neuroendocrine function, and myo-

cardial innervation), could also play a role in the cardiovascular

adaptations and unique exercise capacity of the modern giraffe.

Precise characterization of the mechanisms underlying the gir-

affe heart’s resistance to the adverse effects of chronic pressure

overload may yield important insight for preventing and treating

HFpEF in humans.

RECOGNIZING EVOLUTIONARY ADAPTATIONS AS
A SOURCE OF THERAPEUTIC INNOVATIONS

The giraffe’s unique physiology has long been a source of fas-

cination to biologists and physiologists. Goetz and Keen—two

of the first scientists to gather concrete physiological data on

the giraffe—noted that giraffes exhibited ‘high’ blood pressures

by human standards [47]. The resistance of the giraffe cardio-

vascular system to orthostatic changes via shifts in neck pos-

ition and the ability of its renal system to withstand high arterial

pressures have also received extensive attention over the last

65 years [36, 37, 40, 48–56]. While earlier studies established

thick ventricular walls in the giraffe [36], more recent studies on

the unique cardiac adaptations of the giraffe heart to chronically

high afterload have focused on the physiological and cellular

underpinnings, such as myocardial architecture, cellular struc-

ture, and hemodynamics [19]. Importantly, Smerup et al. [33]

demonstrated that ejection fractions, diastolic ventricular pres-

sures and measures of LV wall stress remained in the ‘normal’

range in comparison to other mammals. Furthermore, normal

diastolic pressures would not be predicted in a morphologically

comparable human ventricle.

The existence of a mammalian cardiovascular system in

which ventricular thickening from pressure-overload does not

reduce diastolic relaxation or elevate cardiopulmonary pres-

sures suggests that models of resistance to human cardiovas-

cular pathologies may have evolved spontaneously in other

species. Non-pathological cardiac remodeling during somatic

growth in the giraffe also focuses attention on developmental

pathways and related regulatory systems as potential

approaches to HFpEF in humans.

Given the importance of pressure-induced physiological LV

thickening in the giraffe and other species-specific cardiovascu-

lar characteristics for human health, why are these connections

relatively unexplored? One factor has been the limited extent to

which physicians perceive the natural world as a source of in-

spiration for complex human pathophysiology. Veterinarians

and wildlife biologists are trained in the core discipline of com-

parative physiology, which seeks to emphasize both differences

between species and the importance of elucidating the underly-

ing mechanisms of how animals interact with and adapt to their

environment. Yet, modern medical education does not trad-

itionally include broad instruction on the diverse range of high-

performance physiologies of other species. Greater collabora-

tive interactions between physicians, veterinarians, animal

physiologists and wildlife biologists would increase the likeli-

hood that biomedical investigators could identify ‘solutions’ to

challenging human pathophysiologies in the natural world.

Rudolf Virchow, the father of modern pathology, observed

that, ‘Between human and animal medicine there is no dividing

line’ [57]. Despite Virchow’s early insight, the separations be-

tween human, comparative, and veterinary cardiology persist.

The lack of communication between these research fields

impedes innovations to the detriment of human CVD. As physi-

cians and investigators increasingly perceive biodiversity in the

natural world as a source of insight for clinical medicine, bioins-

pired solutions to the most challenging cardiovascular issues

may emerge.
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