2,832 research outputs found

    PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma.

    Get PDF
    The discovery that intravenous (IV) infusions of the neuropeptide PACAP-38 (pituitary adenylyl cyclase activating peptide-38) induced delayed migraine-like headaches in a large majority of migraine patients has resulted in considerable excitement in headache research. In addition to suggesting potential therapeutic targets for migraine, the finding provides an opportunity to better understand the pathological events from early events (aura) to the headache itself. Although PACAP-38 and the closely related peptide VIP (vasoactive intestinal peptide) are well-known as vasoactive molecules, the dilation of cranial blood vessels per se is no longer felt to underlie migraine headaches. Thus, more recent research has focused on other possible PACAP-mediated mechanisms, and has raised some important questions. For example, (1) are endogenous sources of PACAP (or VIP) involved in the triggering and/or propagation of migraine headaches?; (2) which receptor subtypes are involved in migraine pathophysiology?; (3) can we identify specific anatomical circuit(s) where PACAP signaling is involved in the features of migraine? The purpose of this review is to discuss the possibility, and supportive evidence, that PACAP acts to induce migraine-like symptoms not only by directly modulating nociceptive neural circuits, but also by indirectly regulating the production of inflammatory mediators. We focus here primarily on postulated extra-dural sites because potential mechanisms of PACAP action in the dura are discussed in detail elsewhere (see X, this edition)

    Search and Seizure - The New Mexico Announcement Cases

    Get PDF

    Conservatism implications of shock test tailoring for multiple design environments

    Get PDF
    A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item

    An improved synthesis, crystal structures, and metallochromism of salts of [Ru(tolyl-terpy)(CN)(3)](-)

    No full text
    The previously reported complex [Ru(ttpy)(CN)(3)] [ttpy = 4'(p-tolyl)-2,2':6',2"-terpyridine] is conveniently synthesised by reaction of ttpy with Ru(dmso)(4)Cl-2 to give [Ru(ttpy)(dmso)Cl-2], which reacts in turn with KCN in aqueous ethanol to afford [Ru(ttpy)(CN)(3)] which was isolated and crystallographically characterised as both its (PPN)(+) and K+ salts. The K+ salt contains clusters containing three complex anions and three K+ cations connected by end-on and side-on cyanide ligation to the K+ ions. The solution speciation behaviour of [Ru(ttpy)(CN)(3)] was investigated with both Zn2+ and K+ salts in MeCN, a solvent sufficiently non-competitive to allow the added metal cations to associate with the complex anion via the externally-directed cyanide lone pairs. UV-Vis spectroscopic titration of (PPN)[Ru(ttpy)(CN)(3)] with Zn(ClO4)(2) showed a blue shift of 2900 cm (1) in the (MLCT)-M-1 absorption manifold due to the ` metallochromism' effect; a series of distinct binding events could be discerned corresponding to formation of 4:1, 1:1 and then 1:3 anion: cation adducts, all with high formation constants, as the titration proceeded. In contrast titration of (PPN)[Ru(ttpy)(CN)(3)] with the more weakly Lewis-acidic KPF6 resulted in a much smaller blue-shift of the 1MLCT absorptions, and the titration data corresponded to formation of 1:1 and then 2: 1 cation: anion adducts with weaker stepwise association constants of the order of 10(4) and then 10(3) M (1). Although association of [Ru(ttpy)(CN)(3)] resulted in a blue-shift of the (MLCT)-M-1 absorptions, the luminescence was steadily quenched, as raising the (MLCT)-M-3 level makes radiationless decay via a lowlying (MC)-M-3 state possible. (C) 2010 Elsevier B. V. All rights reserved

    Magnons in Ferromagnetic Metallic Manganites

    Full text link
    Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of special interest not only because they are a testing ground of the classical doubleexchange interaction mechanism for the colossal magnetoresistance, but also because they exhibit an extraordinary arena of emergent phenomena. These emergent phenomena are related to the complexity associated with strong interplay between charge, spin, orbital, and lattice. In this review, we focus on the use of inelastic neutron scattering to study the spin dynamics, mainly the magnon excitations in this class of FM metallic materials. In particular, we discussed the unusual magnon softening and damping near the Brillouin zone boundary in relatively narrow band compounds with strong Jahn-Teller lattice distortion and charge/orbital correlations. The anomalous behaviors of magnons in these compounds indicate the likelihood of cooperative excitations involving spin, lattice, as well as orbital degrees of freedom.Comment: published in J. Phys.: Cond. Matt. 20 figure
    • …
    corecore