Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of
special interest not only because they are a testing ground of the classical
doubleexchange interaction mechanism for the colossal magnetoresistance, but
also because they exhibit an extraordinary arena of emergent phenomena. These
emergent phenomena are related to the complexity associated with strong
interplay between charge, spin, orbital, and lattice. In this review, we focus
on the use of inelastic neutron scattering to study the spin dynamics, mainly
the magnon excitations in this class of FM metallic materials. In particular,
we discussed the unusual magnon softening and damping near the Brillouin zone
boundary in relatively narrow band compounds with strong Jahn-Teller lattice
distortion and charge/orbital correlations. The anomalous behaviors of magnons
in these compounds indicate the likelihood of cooperative excitations involving
spin, lattice, as well as orbital degrees of freedom.Comment: published in J. Phys.: Cond. Matt. 20 figure