137 research outputs found

    Black holes in the presence of dark energy

    Full text link
    The new, rapidly developing field of theoretical research --- studies of dark energy interacting with black holes (and, in particular, accreting onto black holes) --- is reviewed. The term `dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered.Comment: 25 pages, 10 figures, review pape

    Possible Explanation of the Geograv Detector Signal during the Explosion of SN 1987A in Modified Gravity Models

    Full text link
    A change in gravity law in some regimes is predicted in the modified gravity models that are actively discussed at present. In this paper, we consider a possibility that the signal recorded by the Geograv resonant gravitational-wave detector in 1987 during the explosion of SN 1987A was produced by an abrupt change in the metric during the passage of a strong neutrino flux through the detector. Such an impact on the detector is possible, in particular, in extended scalar-tensor theories in which the local matter density gradient affects the gravitational force. The first short neutrino pulse emitted at the initial stage of stellar core collapse before the onset of neutrino opacity could exert a major influence on the detector by exiting the detector response at the main resonance frequency. In contrast, the influence of the subsequent broad pulse (with a duration of several seconds) in the resonant detector is exponentially suppressed, despite the fact that the second pulse carries an order-of-magnitude more neutrino energy, and it could generate a signal in the LSD neutrino detector. This explains the time delay of 1.4s between the Geograv and LSD signals. The consequences of this effect of modified gravity for LIGO/Virgo observations are discussed.Comment: 7 pages, 2 figures, minor corrections in the text with respect to the published versio

    Compact boson stars in K field theories

    Full text link
    We study a scalar field theory with a non-standard kinetic term minimally coupled to gravity. We establish the existence of compact boson stars, that is, static solutions with compact support of the full system with self-gravitation taken into account. Concretely, there exist two types of solutions, namely compact balls on the one hand, and compact shells on the other hand. The compact balls have a naked singularity at the center. The inner boundary of the compact shells is singular, as well, but it is, at the same time, a Killing horizon. These singular, compact shells therefore resemble black holes.Comment: Latex, 45 pages, 25 figures, some references and comments adde

    On the Extra Mode and Inconsistency of Horava Gravity

    Full text link
    We address the consistency of Horava's proposal for a theory of quantum gravity from the low-energy perspective. We uncover the additional scalar degree of freedom arising from the explicit breaking of the general covariance and study its properties. The analysis is performed both in the original formulation of the theory and in the Stueckelberg picture. A peculiarity of the new mode is that it satisfies an equation of motion that is of first order in time derivatives. At linear level the mode is manifest only around spatially inhomogeneous and time-dependent backgrounds. We find two serious problems associated with this mode. First, the mode develops very fast exponential instabilities at short distances. Second, it becomes strongly coupled at an extremely low cutoff scale. We also discuss the "projectable" version of Horava's proposal and argue that this version can be understood as a certain limit of the ghost condensate model. The theory is still problematic since the additional field generically forms caustics and, again, has a very low strong coupling scale. We clarify some subtleties that arise in the application of the Stueckelberg formalism to Horava's model due to its non-relativistic nature.Comment: Discussion expanded; a figure added; accepted to JHE

    The Imperfect Fluid behind Kinetic Gravity Braiding

    Get PDF
    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formulating the non-trivial conditions for the thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on diffusion and dynamics in alternative frames, as well as additional references. v3 reflects version accepted for publication in JHEP: minor comments added regarding suitability to numerical approache

    On Isotropic Turbulence in the Dark Fluid Universe

    Get PDF
    As first part of this work, experimental information about the decay of isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to t^{-6/5}, is used as input in FRW equations in order to investigate how an initial fraction f of turbulent kinetic energy in the cosmic fluid influences the cosmological development in the late, quintessence/phantom, universe. First order perturbative theory to the first order in f is employed. It turns out that both in the Hubble factor, and in the energy density, the influence from the turbulence fades away at late times. The divergences in these quantities near the Big Rip behave essentially as in a non-turbulent fluid. However, for the scale factor, the turbulence modification turns out to diverge logarithmically. As second part of our work, we consider the full FRW equation in which the turbulent part of the dark energy is accounted for by a separate term. It is demonstrated that turbulence occurrence may change the future universe evolution due to dissipation of dark energy. For instance, phantom-dominated universe becomes asymptotically a de Sitter one in the future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio

    Cosmic coincidence problem and variable constants of physics

    Full text link
    The standard model of cosmology is investigated using time dependent cosmological constant Λ\Lambda and Newton's gravitational constant GG. The total energy content is described by the modified Chaplygin gas equation of state. It is found that the time dependent constants coupled with the modified Chaplygin gas interpolate between the earlier matter to the later dark energy dominated phase of the universe. We also achieve a convergence of parameter ω1\omega\to-1, with minute fluctuations, showing an evolving ω\omega. Thus our model fairly alleviates the cosmic coincidence problem which demands ω=1\omega=-1 at present time.Comment: 27 pages, 15 figure

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as tt\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc
    corecore