22 research outputs found
Radiosensitization of noradrenaline transporter-expressing tumour cells by proteasome inhibitors and the role of reactive oxygen species
Background
The radiopharmaceutical 131I-metaiodobenzylguanidine (131I-MIBG) is used for the targeted radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of 131I-MIBG's efficacy is achieved by combination with the topoisomerase I inhibitor topotecan - currently being evaluated clinically. Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in combination with 131I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the alternative proteasome inhibitor, MG132.<p></p>
Methods
Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation was assessed using antioxidants.<p></p>
Results
Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2c) and UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with X-radiation, with 131I-MIBG, or with 131I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the growth of human tumour xenografts in athymic mice when administered in combination with 131I-MIBG and topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity was ROS-dependent.<p></p>
Conclusions
Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with 131I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.<p></p>
Defining the origins of multiple emission/excitation in rhenium-bisthiazole complexes
The underlying mechanism of the unusual emissive behavior of [Re(CO) 3 -1,1-bis-4-thiazole-(1,4)-diaminobutane)] bromide (4-BT) has been investigated. Synthesis and spectroscopic characterization of structurally similar isomers ([Re(CO) 3 -1,1-bis-2-thiazole-(1,4)-diaminobutane)] bromide (2-BT)) and the location of triplet states, solid state and low temperature spectroscopic measurements, and DFT calculations show that the photophysical properties are not due to photoisomerization as previously hypothesized. The results show that the unusual emissive behavior is not observed in structural isomers, is specific to the previously reported complex, 4-BT, and may arise from vibrational energy relaxation and vibrational cooling. Translation of the unusual emissive behavior to the solid state offers an interesting platform allowing this complex to be potentially utilized as a probe, sensor or photonic device
Experimental treatment of neuroblastoma using [131I]meta-iodobenzylguanidine and topotecan in combination
The radiopharmaceutical [I-131]meta-iodobenzylguanidine ([I-131]MIBG) and the topoisomerase I inhibitor topotecan are both effective as single-agent treatments of neuroblastoma. Our purpose was to assess the therapeutic potential of [I-131]MIBG and topotecan in combination using SK-N-BE(2c) neuroblastoma cells and UVW/NAT glioma cells expressing the noradrenaline transporter transgene. Topotecan treatment was given (i) before, (ii) after or (iii) simultaneously with [I-131]MIBG. DNA fragmentation was evaluated by comet assay and cell cycle redistribution was determined by fluorescence-activated cell sorting. Combination index analysis indicated that delivery schedules (ii) and (iii) were more effective than schedule (i) with respect to clonogenic cell kill. Similarly, significant DNA damage was observed following treatment schedules (ii) and (iii) (p <0.005), but not (i). Prior exposure to topotecan did not significantly enhance [I-131]MIBG uptake in athymic mice bearing tumour xenografts. We conclude that the enhancement of the efficacy of [I-131]MIBG by combining it with topotecan was the result of inhibition of DNA damage repair rather than an increase in expression of the noradrenaline transporter by tumour
Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial
Background: Colistin–carbapenem combinations are synergistic in vitro against carbapenem-resistant Gram-negative bacteria. We aimed to test whether combination therapy improves clinical outcomes for adults with infections caused by carbapenem-resistant or carbapenemase-producing Gram-negative bacteria. Methods: A randomised controlled superiority trial was done in six hospitals in Israel, Greece, and Italy. We included adults with bacteraemia, ventilator-associated pneumonia, hospital-acquired pneumonia, or urosepsis caused by carbapenem-non-susceptible Gram-negative bacteria. Patients were randomly assigned (1:1) centrally, by computer-generated permuted blocks stratified by centre, to intravenous colistin (9-million unit loading dose, followed by 4·5 million units twice per day) or colistin with meropenem (2-g prolonged infusion three times per day). The trial was open-label, with blinded outcome assessment. Treatment success was defined as survival, haemodynamic stability, improved or stable Sequential Organ Failure Assessment score, stable or improved ratio of partial pressure of arterial oxygen to fraction of expired oxygen for patients with pneumonia, and microbiological cure for patients with bacteraemia. The primary outcome was clinical failure, defined as not meeting all success criteria by intention-to-treat analysis, at 14 days after randomisation. This trial is registered at ClinicalTrials.gov, number NCT01732250, and is closed to accrual. Findings: Between Oct 1, 2013, and Dec 31, 2016, we randomly assigned 406 patients to the two treatment groups. Most patients had pneumonia or bacteraemia (355/406, 87%), and most infections were caused by Acinetobacter baumannii (312/406, 77%). No significant difference between colistin monotherapy (156/198, 79%) and combination therapy (152/208, 73%) was observed for clinical failure at 14 days after randomisation (risk difference −5·7%, 95% CI −13·9 to 2·4; risk ratio [RR] 0·93, 95% CI 0·83–1·03). Results were similar among patients with A baumannii infections (RR 0·97, 95% CI 0·87–1·09). Combination therapy increased the incidence of diarrhoea (56 [27%] vs 32 [16%] patients) and decreased the incidence of mild renal failure (37 [30%] of 124 vs 25 [20%] of 125 patients at risk of or with kidney injury). Interpretation: Combination therapy was not superior to monotherapy. The addition of meropenem to colistin did not improve clinical failure in severe A baumannii infections. The trial was unpowered to specifically address other bacteria. Funding: EU AIDA grant Health-F3-2011-278348. © 2018 Elsevier Lt
Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products
###EgeUn###Radiopharmacy is a pharmaceutical specialty responsible for the development and production of radiopharmaceuticals. Radiopharmaceuticals are radioactive drugs, which can be used in two distinct manners: first for diagnosis in oncological, neurological and cardiac diseases, and second for therapy in oncology. Given their great specificity and precision, radiopharmaceuticals are among the most technological products in the field of pharmacy. Among radiopharmaceuticals, radiopharmaceuticals based on Tc-99m are the most widely used in the world. However, radiopharmacy and radiopharmaceuticals are still restricted to a few research centers in the world today. This is largely due to the difficulty in obtaining the radioactive material, the precursor of the radiopharmaceutical, as well as the understanding of the chemistry involved in these materials. In this sense, this study addresses the radiochemistry of radiopharmaceuticals based on Tc-99m as well as the coordination chemistry of these compounds. Finally, this review addresses the pharmaceutical aspects of Tc-99m radiopharmaceuticals.National Scientific and Technological Research Council (CNPQ)National Council for Scientific and Technological Development (CNPq); Rio de Janeiro State Research Foundation (FAPERJ)Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ); CAPESCAPESThe authors would like to thank the National Scientific and Technological Research Council (CNPQ), the Rio de Janeiro State Research Foundation (FAPERJ) and CAPES for funding