49 research outputs found

    Diagnostic and prognostic accuracy of miR-21 in renal cell carcinoma: A systematic review protocol

    Get PDF
    Introduction: Renal cell carcinoma (RCC) is the most common neoplasm in adult kidneys. One of the most important unmet medical needs in RCC is a prognostic biomarker to enable identification of patients at high risk of relapse after nephrectomy. New biomarkers can help improve diagnosis and hence the management of patients with renal cancer. Thus, this systematic review aims to clarify the prognostic and diagnostic accuracy of miR-21 in patients with RCC. Methods and analysis: We will include observational studies evaluating the diagnostic and prognostic roles of miR-21 in patients with renal cancer. The index test and reference standards should ideally be performed on all patients. We will search PubMed, SCOPUS and ISI Web of Science with no restriction of language. The outcome will be survival measures in adult patients with RCC. Study selection and data extraction will be performed by two independent reviewers. QUADAS-1 will be used to assess study quality. Publication bias and data synthesis will be assessed by funnel plots and Begg's and Egger's tests using Stata software V.11.1. Ethics and dissemination: No ethical issues are predicted. These findings will be published in a peerreviewed journal and presented at national and international conferences. Trail registration number: This systematic review protocol is registered in the PROSPERO International Prospective Register of Systematic Reviews, registration number CRD42015025001

    Techniques for evaluation of LAMP amplicons and their applications in molecular biology

    Get PDF
    Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible

    SMAD4 Expression in Renal Cell Carcinomas Correlates With a Stem-Cell Phenotype and Poor Clinical Outcomes

    Get PDF
    Renal cell carcinoma (RCC) is the most lethal neoplasm of common urologic cancers with poor prognoses. SMAD4 has a principal role in TGF-β (Transformis growth factorβ)-induced epithelial to mesenchymal transition (EMT) as a key factor in gaining cancer stem cell (CSC) features and tumor aggressiveness. This study aimed to evaluate the expression patterns and clinical significance of SMAD4 in RCC and the impact of its targeting on stem cell/mesenchymal cells and EMT characteristics in renal spheroid derived cells (SDCs) compared to parental cells (PCs) in RCC. The expression pattern and clinical significance of SMAD4 was evaluated in RCC. SDCs were enriched using a sphere culture system. Then SDCs and their PCs were compared with respect to their sphere and colony formation, expression of putative CSC markers, invasiveness as well as expression of genes, including stemness/mesenchymal, SMAD4 and TGFβ1genes. Finally, the effect of SMAD4 knockdown on SDCs was analyzed. We demonstrated that SMAD4 is positively correlated with decreased disease specific survival (DSS) in RCC patients and clear cell RCC (ccRCC) subtype and associates with poor DSS in patients with RCC, especially in ccRCC as the most metastatic RCC subtype. SDCs exhibited higher stem cell/mesenchymal properties. Inhibition of SMAD4 in PCs accelerated the dissociation of SDCs and decreased their clonogenicity, invasiveness, expression of mesenchymal markers and expression of SMAD4 and TGFβ1 genes compared to SDCs before transfection. We suggest that targeting SMAD4 may be useful against renal CSCs and may improve RCC prognosis. © Copyright © 2021 Rasti, Madjd, Saeednejad Zanjani, Babashah, Abolhasani, Asgari and Mehrazma

    Studies on combination of oxaliplatin and dendrosomal nanocurcumin on proliferation, apoptosis induction, and long non-coding RNA expression in ovarian cancer cells

    Get PDF
    Drug resistance remains a major challenge in the treatment of patients with ovarian cancer. Therefore, the development of new anticancer drugs is a clinical priority to develop more effective therapies. New approaches to improve clinical outcomes and limit the toxicity of anticancer drugs focus on chemoprevention. The aim of this study was to determine the effects of dendrosomal nanocurcumin (DNC) and oxaliplatin (Oxa) and their combination on cell death and apoptosis induction in human ovarian carcinoma cell lines analyzed by MTT assay and flow cytometry, respectively. The synergism effect of Oxa and DNC was analyzed using the equation derived from Chou and Talalay. In addition, real-time PCR was used to measure the effect of this combination on the expression levels of long non-coding RNAs with different expression in ovarian cancer and normal ovaries. Our data showed that the effect of DNC on cell death is more than curcumin alone in the same concentration. The greatest cell death effect was observed in combination of Oxa with DNC, while Oxa was added first, followed by DNC at 4 h interval (0/4 h). The findings indicated that DNC induced apoptosis significantly in both cell lines as compared to control groups; however, combination of both agents had no significant effect in apoptosis induction. In addition, combination of both agents significantly affects the relative expression of long non-coding RNAs investigated in the study as compared with mono therapy. © 2018, Springer Nature B.V

    Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-kappa B pathways

    Get PDF
    RT-qPCR confirms (a) up-regulation of miR-34a, miR-146a, miR-542-3p and miR-503 in pilocytic astrocytomas. (b) low expression of miR-124*, miR-129 and miR-129* in pilocytic astrocytomas. Relative expression shown as Log2 fold change compared to normal adult cerebellum and frontal lobe (normalized to miR-423-3p). Data represent two technical replicates ± SD. (ZIP 516 kb

    Lack of Association of miR-146a rs2910164 Polymorphism with Gastrointestinal Cancers: Evidence from 10206 Subjects

    Get PDF
    BACKGROUND: Recent studies on the association between miR-146a rs2910164 polymorphism and risk of gastrointestinal (GI) cancers showed inconclusive results. Accordingly, we conducted a comprehensive literature search and a meta-analysis to clarify the association. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from the following electronic databases: Pubmed, Excerpta Medica Database (Embase), and Chinese Biomedical Literature Database (CBM), with the last report up to February 24, 2012. The odds ratio (OR) and its 95% confidence interval (95%CI) were used to assess the strength of association. Ultimately, a total of 12 studies (4,817 cases and 5,389 controls) were found to be eligible for meta-analysis. We summarized the data on the association between miR-146a rs2910164 polymorphism and risk of GI cancers in the overall population, and performed subgroup analyses by ethnicity, cancer types, and quality of studies. In the overall analysis, there was no evidence of association between miR-146a rs2910164 polymorphism and the risk of GI cancers (G versus C: OR = 1.07, 95%CI 0.98-1.16, P = 0.14; GG+GC versus CC: OR = 1.14, 95%CI 1.00-1.31, P = 0.05; GG versus GC+CC: OR = 1.06, 95%CI 0.91-1.23, P = 0.47; GG versus CC: OR = 1.17, 95%CI 0.95-1.44, P = 0.13; GC versus CC: OR = 1.14, 95%CI 1.00-1.31, P = 0.05). Similar results were found in the subgroup analyses by ethnicity, cancer types, and quality of studies. CONCLUSIONS/SIGNIFICANCE: This meta-analysis demonstrates that miR-146a rs2910164 polymorphism is not associated with GI cancers susceptibility. More well-designed studies based on larger sample sizes and homogeneous cancer patients are needed

    Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR)

    Get PDF
    © 2016 The Author(s). Objectives: Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. Methods: The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. Results: A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. Conclusion: We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts

    Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration

    No full text
    Coronary artery diseases (CADs) represent a significant cause of death worldwide. During recent decades the rate of cardiovascular mortality has been declined as a result of modern medicine and surgery. However, despite the fact that cardiac cells, including cardiomyocytes (CMCs), vascular smooth muscle cells (VSMC) and vascular endothelial cells (VEC), can be regenerated by cardiac adult stem cell, the regenerative capacity of these cells are limited and inadequate to functionally regenerate heart damaged tissue. Thus, growth reserve of the heart fails to restore the structural integrity of the myocardium after infarction and healing is associated with scar formation. An explanation for this is that cardiac reside stem cells are present throughout the infarction site but die rapidly by apoptosis. Furthermore, microenvironment surrounding the damage site is not promising for the cells survival and renewal. Hence, recent advances in the stem cell therapy have emerged as an attractive approach to replace the lost cells. In this context, mesenchymal stem cells (MSCs) has considered as one of the most promising candidates for regeneration of cardiac cells, lost upon injury. The regenerative capacity of MSCs has primarily been centered on the hypothesis that these cells would engraft, differentiate and replace damaged cardiac cells. However, experimental and clinical observations so far have failed to establish if this differentiated is considerably relevant to MSCs cardiac regenerative properties. Recent reports have suggested that these therapeutic properties, at least in part, are mediated by paracrine factors released from MSCs. This review provides a concise summary of current evidences supporting the paracrine hypothesis of MSCs. In particular, the scope of this review focuses on the role of MSC-derived exosome (MSC-EXs) as a therapeutic modality for the treatment of CADs, particularly ischemic myocardial dysfunctions. © 2016 by the C.M.B. Association. All rights reserved

    Non-coding RNAs underlying chemoresistance in gastric cancer.

    Full text link
    BackgroundGastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC.ConclusionsIn this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC

    Advances of exosome isolation techniques in lung cancer

    No full text
    Lung cancer (LC) is among the leading causes of death all over the world and it is often diagnosed at advanced or metastatic stages. Exosomes, derived from circulating vesicles that are released from the multivesicular body, can be utilized for diagnosis and also the prognosis of LC at early stages. Exosomal proteins, RNAs, and DNAs can help to better discern the prognostic and diagnostic features of LC. To our knowledge, there are various reviews on LC and the contribution of exosomes, but none of them are about the exome techniques and also their efficiency in LC. To fill this gap, in this review, we summarize the recent investigations regarding isolation and also the characterization of exosomes of LC cells. Furthermore, we discuss the noncoding RNAs as biomarkers and their applications in the diagnosis and prognosis of LC. Finally, we compare the efficacy of exosome isolation methods to better fi + 6 + guring out feasible techniques.Scopu
    corecore