10 research outputs found

    Scalable and Efficient Multipath Routing via Redundant Trees

    No full text

    FRADIR: A Novel Framework for Disaster Resilience

    No full text
    In this paper we present a novel framework for disaster resilience, called FRADIR, which incorporates reliable network design, disaster failure modeling and protection routing in order to improve the availability of mission-critical applications. To the best of our knowledge, this is the first comprehensive framework which utilizes tools from all these fields in a joint design of disaster resilient connections. In particular, we introduce a new probabilistic regional failure model, which does not only take into account the distance from the epicenter of the failure, but includes the (improved) availability values of the network components into the model, too. Based on the failure list generated as the result of the availability-aware disaster failure model, dedicated protection approaches are used to route the connection requests. We demonstrate the concept and benefits of FRADIR through experimental results in two real-like network topologies. Our proof-of-concept implementation shows that with the interplay between protection routing, failure modeling and network update procedure the network performance in terms of blocking probability and average resource consumption can be significantly improved, which makes FRADIR a possible competitor to provide disaster resiliency in critical infrastructures

    Improving Resiliency and Throughput of Transport Networks with OpenFlow and Multipath TCP: Demonstration of Results Over the Géant OpenFlow testbed

    No full text
    Currently, each networking layer redundantly has its own recovery mechanism resulting in more expensive networking equipment and higher operational costs. Can we get rid of all these mechanisms below the transport layer and use multipath transport protocol to provide the required resiliency

    FRADIR-II: An Improved Framework for Disaster Resilience

    No full text
    In this paper, we present a framework for disaster resilience, called FRADIR-II, which improves the performance of its previous counterpart. In the novel framework, two different failure models are jointly considered: independent random failures and regional failures that may be used to model the effect of disasters. First, we design an infrastructure against random failures, termed as the spine, which guarantees a certain availability to the working paths. Second, in order to prepare this infrastructure against disasters, we introduce a probabilistic regional failure model, where a modified Euclidean distance of an edge to the epicenter of a disaster is used. The proposed function jointly takes into account the physical length of the edges and their availability, so that a higher/lower availability is reflected in a higher/lower distance from the epicenter. This novel availability-aware disaster failure model generates a failure list which is deemed to be more realistic than previous approaches. Next, a heuristic for link upgrade attempting at the reduction of the likelihood of regional failures disconnecting the network is proposed. Finally, a generalized dedicated protection algorithm is used to route the connection requests, providing protection against the obtained failure list. The experimental results show that FRADIR-II is able to provide disaster resilience even in critical infrastructures

    Improving Resiliency and Throughput of Transport Networks with OpenFlow and Multipath TCP: Demonstration of Results Over the Géant OpenFlow testbed

    No full text
    Currently, each networking layer redundantly has its own recovery mechanism resulting in more expensive networking equipment and higher operational costs. Can we get rid of all these mechanisms below the transport layer and use multipath transport protocol to provide the required resiliency

    eFRADIR: An Enhanced FRAmework for DIsaster Resilience

    No full text
    This paper focuses on how to increase the availability of a backbone network with minimal cost. In particular, the new framework focuses on resilience against natural disasters and is an evolution of the FRADIR/FRADIR-II framework. It targets three different directions, namely: network planning, failure modeling, and survivable routing. The steady state network planning is tackled by upgrading a sub-network (a set of links termed the spine) to achieve the targeted availability threshold. A new two-stage approach is proposed: a heuristic algorithm combined with a mixed-integer linear problem to optimize the availability upgrade cost. To tackle the disaster-resilient network planning problem, a new integer linear program is presented for the optimal link intensity tolerance upgrades together with an efficient heuristic scheme to reduce the running time. Failure modeling is improved by considering more realistic disasters. In particular, we focus on earthquakes using the historical data of the epicenters and the moment magnitudes. The joint failure probabilities of the multi-link failures are estimated, and the set of shared risk link groups is defined. The survivable routing aims to improve the network's connectivity during these shared risk link group failures. Here, a generalized dedicated protection algorithm is used to protect against all the listed failures. Finally, the experimental results demonstrate the benefits of the refined eFRADIR framework in the event of disasters by guaranteeing low disconnection probabilities even during large-scale natural disasters.This article is based on work from COST Action CA15127 ("Resilient communication services protecting end-user applications from disaster-based failures" - RECODIS), supported by COST (European Cooperation in Science and Technology); http://www.cost.eu. This work was supported in part by the High Speed Networks Laboratory (HSNLab); in part by the National Research, Development, and Innovation Fund of Hungary, financed through the FK_17, KH_18, K_17, FK_20 and K_18 funding schemes, respectively, under Project 123957, Project 129589, Project 124171, Project 134604, and Project 128062; and in part by the BME through the TKP2020, Institutional Excellence Program of the National Research Development and Innovation Office in the field of Artificial Intelligence under Grant BME IE-MI-SC TKP2020. The work of Rita Girão-Silva and Teresa Gomes was supported in part by the Fundação para a Ciência e a Tecnologia (FCT), I.P. under Project UIDB/00308/2020, and in part by the ERDF Funds through the Centre's Regional Operational Program and by National Funds through FCT under Project CENTRO-01-0145-FEDER-029312

    A survey on network resiliency methodologies against weather-based disruptions

    Get PDF
    Due to the increasing dependence on network services of our society, research has recently been concentrating on enhancing traditional protection strategies to withstand large scale failures, as in case of disaster events. The recently-formed EU-funded RECODIS project aims at coordinating and fostering research collaboration in Europe on disaster resiliency in communication networks. In particular, the Working Group (WG) 2 of the RECODIS project focuses on developing new network resiliency strategies to survive weather-based disruptions. As a first step, WG2 members have conducted a comprehensive literature survey on existing studies on this topic. This paper classifies and summarizes the most relevant studies collected by WG2 members in this first phase of the project. While the majority of studies regarding weather-based disruptions deals with wireless network (as wireless channel is directly affected by weather conditions), in this survey we cover also disaster resiliency approaches designed for wired network if they leverage network reconfiguration based on disaster “alerts”, considering that many weather-based disruptions grant an “alert” thanks to weather forecast

    A Survey on Network Resiliency Methodologies against Weather-based Disruptions

    No full text
    Due to the increasing dependence on network ser- vices of our society, research has recently been concentrating on enhancing traditional protection strategies to withstand large- scale failures, as in case of disaster events. The recently-formed EU-funded RECODIS project aims at coordinating and fostering research collaboration in Europe on disaster resiliency in com- munication networks. In particular, the Working Group (WG) 2 of the RECODIS project focuses on developing new network- resiliency strategies to survive weather-based disruptions. As a first step, WG2 members have conducted a comprehensive literature survey on existing studies on this topic. This paper classifies and summarizes the most relevant studies collected by WG2 members in this first phase of the project. While the majority of studies regarding weather-based disruptions deals with wireless network (as wireless channel is directly affected by weather conditions), in this survey we cover also disaster- resiliency approaches designed for wired network if they leverage network reconfiguration based on disaster “alerts”, considering that many weather-based disruptions grant an “alert” thanks to weather forecast
    corecore