423 research outputs found

    Radiotherapy for tumors of the stomach and gastroesophageal junction - a review of its role in multimodal therapy

    Get PDF
    There is broad consensus on surgical resection being the backbone of curative therapy of gastric- and gastroesophageal junction carcinoma. Nevertheless, details on therapeutic approaches in addition to surgery, such as chemotherapy, radiotherapy or radiochemotherapy are discussed controversially; especially whether external beam radiotherapy should be applied in addition to chemotherapy and surgery is debated in both entities and differs widely between regions and centers. Early landmark trials such as the Intergroup-0116 and the MAGIC trial must be interpreted in the context of potentially insufficient lymph node resection. Despite shortcomings of both trials, benefits on overall survival by radiochemotherapy and adjuvant chemotherapy were confirmed in populations of D2-resected gastric cancer patients by Asian trials. Recent results on junctional carcinoma patients strongly suggest a survival benefit of neoadjuvant radiochemotherapy in curatively resectable patients. An effect of chemotherapy in the perioperative setting as given in the MAGIC study has been confirmed by the ACCORD07 trial for junctional carcinomas; however both the studies by Stahl et al. and the excellent outcome in the CROSS trial as compared to all other therapeutic approaches indicate a superiority of neoadjuvant radiochemotherapy as compared to perioperative chemotherapy in junctional carcinoma patients. Surgery alone without neoadjuvant or perioperative therapy is considered suboptimal in patients with locally advanced disease. In gastric carcinoma patients, perioperative chemotherapy has not been compared to adjuvant radiochemotherapy in a randomized setting. Nevertheless, the results of the recently published ARTIST trial and the Chinese data by Zhu and coworkers, indicate a superiority of adjuvant radiochemotherapy as compared to adjuvant chemotherapy in terms of disease free survival in Asian patients with advanced gastric carcinoma. The ongoing CRITICS trial is supposed to provide reliable conclusions about which therapy should be preferred in Western patients with gastric carcinoma. If radiotherapy is performed, modern approaches such as intensity-modulated radiotherapy and image guidance should be applied, as these methods reduce dose to organs at risk and provide a more homogenous coverage of planning target volumes

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    Single photon extraction for FACT's SiPMs allows for novel IACT event representation

    Get PDF
    Imaging Atmospheric Cherenkov Telescopes provide large gamma-ray collection areas > 104 m2 and successfully probe the high energetic gamma-ray sky by observing extensive air-showers during the night. The First G-APD Cherenkov Telescope (FACT) explores silicon based photoelectric converters (called G-APDs or SiPMs) which provide more observation time with strong moonlight, a more stable photon gain over years of observations, and mechanically simpler imaging cameras. So far, the signal extraction methods used for FACT originate from sensors with no intrinsic quantized responses like photomultiplier tubes. This standard signal extraction is successfully used for the long time monitoring of the gamma-ray flux of bright blazars. However, we now challenge our classic signal extraction and explore single photon extraction methods to take advantage of the highly stable and quantized single photon responses of FACT’s SiPM sensors. Instead of having one main pulse with one arrival time and one photon equivalent extracted for each pixel, we extract the arrival times of all individual photons in a pixel’s time line which opens up a new dimension in time for representing extensive air-showers with an IACT.S. A. Mueller, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    FACT - Highlights from more than Five Years of Unbiased Monitoring at TeV Energies

    Get PDF
    The First G-APD Cherenkov Telescope (FACT) is monitoring blazars at TeV energies. Thanks to the observing strategy, the automatic operation and the usage of solid state photosensors (SiPM, aka G-APDs), the duty cycle of the instrument has been maximized and the observational gaps minimized. This provides a unprecedented, unbiased data sample of almost 9000~hours of data of which 2375 hours were taken in 2016. An automatic quick look analysis provides results with low latency on a public website. More than 40 alerts have been sent in the last three years based on this. To study the origin of the very high energy emission from blazars simultaneous multi-wavelength and multi-messenger observations are crucial to draw conclusions on the underlying emission mechanisms, e.g. to distinguish between leptonic and hadronic models. FACT not only participates in multi-wavelength studies, correlation studies with other instruments and multi-messenger studies, but also collects time-resolved spectral energy distributions using a target-of-opportunity program with X-ray satellites. At TeV energies, FACT provides an unprecedented, unbiased data sample. Using up to 1850 hours per source, the duty cycle of the sources and the characteristics of flares at TeV energies are studied. In the presentation, the highlights from more than five years of monitoring will be summarized including several flaring activities of Mrk 421, Mrk 501 and 1ES 1959+650.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    Measuring the optical point spread function of FACT using the Cherenkov camera

    Get PDF
    FACT, the First G-APD Cherenkov Telescope, is an Imaging Air Cherenkov Telescope (IACT) operating since 2011 at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. As typical for IACTs, its reflector is comprised of smaller mirror facets and not protected by a dome. In the case of FACT, 30 hexagonal facets form a total mirror area of 9:5m². Hence, it is crucial to monitor the optical properties of this system and realign the facets if necessary. Up to now, measuring the Point Spread Function of FACT required human interaction to mount a screen and an optical camera. In this contribution, a new method to measure the optical Point Spread Function using directly the Cherenkov camera of the telescope is presented. Inspired by the method radio telescopes use to determine their resolution, the telescope is pointed towards a fixed position on the trajectory of a star. During the star’s passage through the field of view, the camera is read out using a fixed rate. In each event, the pedestal variance is determined for each pixel. This value is directly correlated with the amount of night sky background light a pixel received. Translating the time of the measurement to the position of the star in the camera enables to determine the optical point spread function from this measurement. As the measurement is done for each pixel along the trajectory of the star, the Point Spread Function can be determined not only for the camera center but for the entire field of view. In this contribution, the new method will also be compared with the existing methods of determining the optical Point Spread Function: direct measurement with an optical camera and the width of Muon ring events.M. Noethe, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, S. A. Mueller, D. Neise, A. Neronov, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    FACT - Time-resolved blazar SEDs

    Get PDF
    Blazars are highly variable objects and their spectral energy distribution (SED) features two peaks. The emission at low energies is understood, however, the origin of the emission at TeV energies is strongly debated. While snapshots of SEDs usually can be explained with simple models, the evolution of SEDs challenges many models and allows for conclusions on the emission mechanisms. Leptonic models expect a correlation between the two peaks, while hadronic models can accommodate more complex correlations. To study time-resolved SEDs, we set up a target-of-opportunity program triggering high-resolution X-ray observations based on the monitoring at TeV energies by the First G-APD Cherenkov Telescope (FACT). To search for time lags and identify orphan flares, this is accompanied by X-ray monitoring with the Swift satellite. These observations provide an excellent multi-wavelength (MWL) data sample showing the temporal behaviour of the blazar emission along the electromagnetic spectrum. To constrain the origin of the TeV emission, we extract the temporal evolution of the low energy peak from Swift data and calculate the expected flux at TeV energies using a theoretical model. Comparing this to the flux measured by FACT, we want to conclude on the underlying physics. Results from more than five years of monitoring will be discussed.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walter, FACT Collaboration, A. Kreikenbohm, K. Leite

    FACT - Performance of the first cherenkov telescope observing with SiPMs

    Get PDF
    The First G-APD Cherenkov Telescope (FACT) is pioneering the usage of silicon photo multipliers (SIPMs also known as G-APDs) for the imaging atmospheric Cherenkov technique. It is located at the Observatorio Roque de los Muchachos on the Canary island of La Palma. Since first light in October 2011, it is monitoring bright TeV blazars in the northern sky. By now, FACT is the only imaging atmospheric Cherenkov telescope operating with SIPMs on a nightly basis. Over the course of the last five years, FACT has been demonstrating their reliability and excellent performance. Moreover, their robustness allowed for an increase of the duty cycle including nights with strong moon light without the need for UV-filters. In this contribution, we will present the performance of the first Cherenkov telescope using solid state photo sensors, which was determined in analysis of data from Crab Nebula, the so called standard candle in gamma-ray astronomy. The presented analysis chain utilizes modern data mining methods and unfolding techniques to obtain the energy spectrum of this source. The characteristical results of such an analysis will be reported providing, e.g., the angular and energy resolution of FACT, as well as, the energy spectrum of the Crab Nebula. Furthermore, these results are discussed in the context of the performance of coexisting Cherenkov telescopes.M. Noethe, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, S. Mueller, D. Neise, A. Neronov, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte
    • …
    corecore