281 research outputs found

    Shear Capacity of Monolithic Concrete Joints without Transverse Reinforcement.

    Get PDF
    yesA mechanism analysis based on the upper-bound theorem of concrete plasticity for monolithic concrete joints without transverse reinforcement is presented. Concrete is modelled as a rigid–perfectly plastic material obeying modified Coulomb failure criteria. Existing stress–strain relationships of concrete in compression and tension are comprehensively modified using the crack band theory to allow for concrete type and maximum aggregate size. Simple equations for the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction are then mathematically developed using the modified stress–strain relationships of concrete. In addition, 12 push-off specimens made of all-lightweight, sand–lightweight and normal-weight concrete having maximum aggregate size between 4 and 19 mm were physically tested. Test results and mechanism analysis clearly showed that the shear capacity of monolithic concrete joints increased with the increase of the maximum aggregate size and dry density of concrete. The mean and standard deviation of the ratio between experimentally measured and predicted (by the mechanism analysis shear capacities) are 1·01 and 0·16 respectively, showing a closer prediction and less variation than Vecchio and Collins' equation, regardless of concrete type and maximum aggregate size

    Validation of a simplified micromodel for analysis of infilled RC frames exposed to cyclic lateral loads

    Get PDF
    An RC frame structure with masonry infill walls (‘‘framed-masonry’’) exposed to lateral loads acts as a composite structure. Numerical simulation of framed-masonry is difficult and generally unreliable due to many difficulties and uncertainties in its modelling. In this paper, we reviewed the usability of an advanced non-linear FEM computer program to accurately predict the behaviour of framed-masonry elements when exposed to cyclic lateral loading. Numerical results are validated against the test results of framedmasonry specimens, with and without openings. Initial simplified micromodels were calibrated by adjustment of the input parameters within the physically justifiable borders, in order to obtain the best correlation between the experimental and numerical results. It has been shown that the use of simplified micromodels for the investigation of composite masonry-infilled RC frames requires in-depth knowledge and engineering judgement in order to be used with confidence. Modelling problems were identified and explained in detail, which in turn offer an insight to practising engineers on how to deal with them

    A model for reactive porous transport during re-wetting of hardened concrete

    Full text link
    A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.Comment: 30 page
    corecore