339 research outputs found

    Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds

    Full text link
    (abbreviated) This article considers recent advances in the investigation of the thermal and magnetic properties of integrable spin ladder models and their applicability to the physics of real compounds. The ground state properties of the integrable two-leg spin-1/2 and the mixed spin-(1/2,1) ladder models at zero temperature are analyzed by means of the Thermodynamic Bethe Ansatz. Solving the TBA equations yields exact results for the critical fields and critical behaviour. The thermal and magnetic properties of the models are investigated in terms of the recently introduced High Temperature Expansion method, which is discussed in detail. It is shown that in the strong coupling limit the integrable spin-1/2 ladder model exhibits three quantum phases: (i) a gapped phase in the regime H<Hc1H<H_{c1}, (ii) a fully polarised phase for H>Hc2H>H_{c2}, and (iii) a Luttinger liquid magnetic phase in the regime Hc1<H<Hc2H_{c1}<H<H_{c2}. The critical behaviour in the vicinity of the critical points is of the Pokrovsky-Talapov type. The temperature-dependent thermal and magnetic properties are directly evaluated from the exact free energy expression and compared to known experimental results for a range of strong coupling ladder compounds. Similar analysis of the mixed spin-(1/2,1) ladder model reveals a rich phase diagram, with a 1/3 and a full saturation magnetisation plateau within the strong antiferromagnetic rung coupling regime. For weak rung coupling, the fractional magnetisation plateau is diminished and a new quantum phase transition occurs. The phase diagram can be directly deduced from the magnetisation curve obtained from the exact result derived from the HTE. The thermodynamics of the spin-orbital model with different single-ion anisotropies is also investigated.Comment: 90 pages, 33 figures, extensive revisio

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number β€˜RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe

    Temporal transcriptome changes induced by MDV in marek's disease-resistant and -susceptible inbred chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD.</p> <p>Results</p> <p>In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 6<sub>3</sub>, susceptible line 7<sub>2 </sub>and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 6<sub>3 </sub>and 7<sub>2 </sub>after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 6<sub>3 </sub>and RCS-M chickens that are both different from line 7<sub>2</sub>. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 7<sub>2</sub>; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 6<sub>3 </sub>and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 6<sub>3 </sub>and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 7<sub>2 </sub>and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility.</p> <p>Conclusions</p> <p>By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as <it>CD8Ξ±</it>, <it>IL8</it>, <it>USP18</it>, and <it>CTLA4</it>, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.</p

    Effects of CuO additives and sol-gel technique on NiNb2O6 dielectric ceramics for LTCC application

    Get PDF
    The effects of CuO additives and sol–gel method synthesis on the sintering behavior, microstructure and the microwave dielectric properties of NiNb2O6 ceramics were investigated systematically. The NiNb2O6 ceramics were synthesized with traditional solid state method and sol–gel method, and the CuO additives were used in the solid state method for comparison. The sintering temperature of NiNb2O6 ceramics with the highest densification can be effectively reduced from about 1275 Β°C to 1050 and 1100 Β°C respectively by using CuO additions and sol–gel technique. To study their applicability in low temperature co-fired ceramic technology, dielectric properties have been characterized. The dielectric properties exhibited a significant dependence on the sintering condition, composition and crystal structure of the ceramics. In particular, the 2.5 wt% CuO-doped NiNb2O6 ceramics sintered at 1050 Β°C have excellent microwave dielectric properties: Ξ΅r = 21.45, Q Γ— f = 23,531 GHz, Ο„f = βˆ’27.9 ppm/Β°C. While the NiNb2O6 ceramics prepared by sol–gel method obtain microwave dielectric properties as: Ξ΅r = 19.16, Q Γ— f = 11,149 GHz, Ο„f = βˆ’27.3 ppm/Β°C after sintered at 1100 Β°C for 2 h

    Virus-free induction of pluripotency and subsequent excision of reprogramming factors

    Get PDF
    Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors1-7. However, such iPS cells contain a large number of viral vector integrations1,8, any one of which could cause unpredictable genetic dysfunction. While c-Myc is dispensable for reprogramming9,10, complete elimination of the other exogenous factors is also desired since ectopic expression of either Oct4 or Klf4 can induce dysplasia11,12. Two transient transfection reprogramming methods have been published to address this issue13,14. However, the efficiency of either approach is extremely low, and neither has thus far been applied successfully to human cells. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc​,​ Klf4​,​ Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimeric mice. When the single vector reprogramming system was combined with a piggyBac transposon15,16 we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models

    Ca2+ Cycling in Heart Cells from Ground Squirrels: Adaptive Strategies for Intracellular Ca2+ Homeostasis

    Get PDF
    Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca2+ homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca2+ current (ICa) was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of ICa did not compromise the Ca2+-induced Ca2+ release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of ICa. Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca2+ removal were more rapid in ground squirrels. Ca2+ sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high ICa threshold, low SR Ca2+ leak and rapid cytosolic Ca2+ clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca2+ homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca2+ overload-related heart diseases

    Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    Get PDF
    Background: Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. b-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings: We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of b-catenin and c-Myc protein levels. Stabilized b-catenin promoted ES self-renewal through two mechanisms. First, b-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, b-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. b-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance: Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cell

    Evolution and genetic architecture of sex-limited polymorphism in cuckoos

    Get PDF
    Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries

    bantam Is Required for Optic Lobe Development and Glial Cell Proliferation

    Get PDF
    microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution
    • …
    corecore