1,995 research outputs found
Seed weight variation of wyoming sagebrush in Northern Nevada
Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85% of the total variation in mean seed weight ( P=0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r2=0.00, P=0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.Fil: Busso, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Perryman, Barry L.. University of Nevada; Estados Unido
s-Processing in the Galactic Disk. I. Super-Solar Abundances of Y, Zr, La, Ce in Young Open Clusters
In a recent study, based on homogeneous barium abundance measurements in open
clusters, a trend of increasing [Ba/Fe] ratios for decreasing cluster age was
reported. We present here further abundance determinations, relative to four
other elements hav- ing important s-process contributions, with the aim of
investigating whether the growth found for [Ba/Fe] is or not indicative of a
general property, shared also by the other heavy elements formed by slow
neutron captures. In particular, we derived abundances for yttrium, zirconium,
lanthanum and cerium, using equivalent widths measurements and the MOOG code.
Our sample includes 19 open clusters of different ages, for which the spectra
were obtained at the ESO VLT telescope, using the UVES spectrometer. The growth
previously suggested for Ba is confirmed for all the elements analyzed in our
study. This fact implies significant changes in our views of the Galactic
chemical evolution for elements beyond iron. Our results necessarily require
that very low-mass AGB stars (M < 1.5M\odot) produce larger amounts of
s-process elements (hence acti- vate the 13 C-neutron source more effectively)
than previously expected. Their role in producing neutron-rich elements in the
Galactic disk has been so far underestimated and their evolution and
neutron-capture nucleosynthesis should now be reconsidered.Comment: ApJ accepte
Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances
We present the results of s-process nucleosynthesis calculations for AGB
stars of different metallicities and initial masses. The computations were
based on previously published stellar evolutionary models that account for the
III dredge up phenomenon occurring late on the AGB. Neutron production is
driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny
layer in radiative equilibrium at the top of the He- and C-rich shell. The
s-enriched material is subsequently mixed with the envelope by the III dredge
up, and the envelope composition is computed after each thermal pulse. We
follow the changes in the photospheric abundance of the Ba-peak elements (heavy
s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic
ratio [hs/ls] has often been adopted as an indicator of the s-process
efficiency. The theoretical predictions are compared with published abundances
of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB
supergiants, and for various classes of binary stars. The observations in
general confirm the complex dependence of n captures on metallicity. They
suggest that a moderate spread exists in the abundance of 13C that is burnt in
different stars. Although additional observations are needed, a good
understanding has been achieved of s-process operation in AGB. The detailed
abundance distribution including the light elements (CNO) of a few s-enriched
stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table
Axillary bud viability and dry matter production of Poa ligularis in Patagonian grasslands
Poa ligularis Nees is one of the dominant perennial grass species in Patagonian grasslands. This is the first field study which investigated the effects of defoliation frequency on its number of viable axillary buds, and subsequent dry matter production during one growing season. Experiments were arranged in a randomized complete block design. Treatments included one defoliation height (10 cm), from one to five times a year, and undefoliated controls. Bud respiratory activity was examined usingthe tetrazolium test and the vital stain Evan's blue. At the end of the growing season, plants that have been defoliated more than three times showed significatively (p<0.05) lower number of respiratory active buds than unclipped controls. A high defoliation frequency increased bud death in stem bases. Both defoliated and undefoliated plants produced more (p<0.05) axillary buds at the periphery than at their center. Defoliation treatments increased shoot weight by 13.4% on average compared with undefoliated controls, but reduced in by 10% the average number of metabolically active axillary buds. This indicates that this reduction, however, was not high enough to constrain dry matter production.It appears that Poa ligularis could tolerate moderate grazing frequency and intensity without compromising its potential regrowth capacity. Longer-term studies of the effects of defoliation on dry matter production and bud metabolic activity are needed to understand the cumulative effects of grazing of P. ligularis in natural grasslands.Poa ligularis Nees es una de las especies de gramíneas perennes dominantes en los pastizales naturales de la Patagonia. Este es el primer estudio que investigó los efectos de la frequencia de defoliación sobre su número de yemas axilares viables, y subsiguiente producción de materia seca durante una estación de crecimiento. Los estudios se efectuaron utilizando un diseño de bloques completamente al azar. Los tratamientos incluyeron una altura de defoliación (10 cm), de una a cinco veces por año, además de controles no defoliados. La actividad respiratoria de las yemas fue examinada usando el método del tetrazolio y el colorante vital azul de Evans.Hacia el final de la estación de crecimiento, las plantas que habían sido defoliadas más de tres veces mostraron un número significativamente menor (p<0.05) de yemas con actividad respiratoria que los controles no defoliados. Una alta frecuencia de defoliación incrementó la muerte de yemas en las bases de tallos. Todas las plantas- defoliadas o no, produjeron más (p<0.05) yemas axilares en su periferia que en su centro. La defoliación incrementó 13.4% el peso de los tallos en promedio, pero redujo en 10% el número promedio de yemas axilares metabólicamente activas. Esto indica que esta reducción , sin embargo, no fue suficiente como para limitar la producción de materia seca. Parece que P. ligularis toleraría una frecuencia e intensidad moderada de pastoreo sin comprometer su capacidad potencial de rebrote. Se necesitan estudios a más largo plazo de los efectos de la defoliación en la producción de materia seca y actividad metabólica de las yemas para entender los efectos acumulativos del pastoreo de Poa ligularis en los pastizales naturales.Fil: Souto, Cintia Paola. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Becker, G. F.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Siffredi, G. L.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Busso, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Sterberg, M.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentin
A physics-based life prediction methodology for thermal barrier coating systems
A novel mechanistic approach is proposed for the prediction of the life of
thermal barrier coating (TBC) systems. The life prediction methodology is based
on a criterion linked directly to the dominant failure mechanism. It relies on
a statistical treatment of the TBC's morphological characteristics,
non-destructive stress measurements and on a continuum mechanics framework to
quantify the stresses that promote the nucleation and growth of microcracks
within the TBC. The last of these accounts for the effects of TBC constituents'
elasto-visco-plastic properties, the stiffening of the ceramic due to sintering
and the oxidation at the interface between the thermally insulating yttria
stabilized zirconia (YSZ) layer and the metallic bond coat. The mechanistic
approach is used to investigate the effects on TBC life of the properties and
morphology of the top YSZ coating, metallic low-pressure plasma sprayed bond
coat and the thermally grown oxide. Its calibration is based on TBC damage
inferred from non-destructive fluorescence measurements using
piezo-spectroscopy and on the numerically predicted local TBC stresses
responsible for the initiation of such damage. The potential applicability of
the methodology to other types of TBC coatings and thermal loading conditions
is also discussed
The effects of a revised Be e-capture rate on solar neutrino fluxes
The electron-capture rate on Be is the main production channel for Li
in several astrophysical environments. Theoretical evaluations have to account
for not only the nuclear interaction, but also the processes in the plasma
where Be ions and electrons interact. In the past decades several estimates
were presented, pointing out that the theoretical uncertainty in the rate is in
general of few percents. In the framework of fundamental solar physics, we
consider here a recent evaluation for the Be+e rate, not used up to now
in the estimate of neutrino fluxes. We analysed the effects of the new
assumptions on Standard Solar Models (SSMs) and compared the results obtained
by adopting the revised Be+e rate to those obtained by the one reported
in a widely used compilation of reaction rates (ADE11). We found that new SSMs
yield a maximum difference in the efficiency of the Be channel of about
-4\% with respect to what is obtained with the previously adopted rate. This
fact affects the production of neutrinos from B, increasing the relative
flux up to a maximum of 2.7\%. Negligible variations are found for the physical
and chemical properties of the computed solar models. The agreement with the
SNO measurements of the neutral current component of the B neutrino flux is
improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&
On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios
Recent improvements in stellar models for intermediate-mass and massive stars
are recalled, together with their expectations for the synthesis of radioactive
nuclei of lifetime Myr, in order to re-examine the origins
of now extinct radioactivities, which were alive in the solar nebula. The
Galactic inheritance broadly explains most of them, especially if -process
nuclei are produced by neutron star merging according to recent models.
Instead, Al, Ca, Cs and possibly Fe require
nucleosynthesis events close to the solar formation. We outline the persisting
difficulties to account for these nuclei by Intermediate Mass Stars (2
M/M). Models of their final stages now
predict the ubiquitous formation of a C reservoir as a neutron capture
source; hence, even in presence of Al production from Deep Mixing or Hot
Bottom Burning, the ratio Al/Pd remains incompatible with
measured data, with a large excess in Pd. This is shown for two recent
approaches to Deep Mixing. Even a late contamination by a Massive Star meets
problems. In fact, inhomogeneous addition of Supernova debris predicts
non-measured excesses on stable isotopes. Revisions invoking specific low-mass
supernovae and/or the sequential contamination of the pre-solar molecular cloud
might be affected by similar problems, although our conclusions here are
weakened by our schematic approach to the addition of SN ejecta. The limited
parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap
Discovery of Blue Hook Stars in the Massive Globular Cluster M54
We present BV photometry centered on the globular cluster M54 (NGC 6715). The
color-magnitude diagram clearly shows a blue horizontal branch extending
anomalously beyond the zero age horizontal branch theoretical models. These
kinds of horizontal branch stars (also called ``blue hook'' stars), which go
beyond the lower limit of the envelope mass of canonical horizontal branch hot
stars, have so far been known to exist in only a few globular clusters: NGC
2808, Omega Centauri (NGC 5139), NGC 6273, and NGC 6388. Those clusters, like
M54, are among the most luminous in our Galaxy, indicating a possible
correlation between the existence of these types of horizontal branch stars and
the total mass of the cluster. A gap in the observed horizontal branch of M54
around T(eff)= 27000 K could be interpreted within the late helium flash
theoretical scenario, a possible explanation for the origin of those stars.Comment: 10 pages, 2 figures, accepted for publication in the Astrophysical
Journa
- …