3,135 research outputs found

    Shawn: A new approach to simulating wireless sensor networks

    Full text link
    We consider the simulation of wireless sensor networks (WSN) using a new approach. We present Shawn, an open-source discrete-event simulator that has considerable differences to all other existing simulators. Shawn is very powerful in simulating large scale networks with an abstract point of view. It is, to the best of our knowledge, the first simulator to support generic high-level algorithms as well as distributed protocols on exactly the same underlying networks.Comment: 10 pages, 2 figures, 2 tables, Latex, to appear in Design, Analysis, and Simulation of Distributed Systems 200

    Molecular dynamics simulations of the dipolar-induced formation of magnetic nanochains and nanorings

    Full text link
    Iron, cobalt and nickel nanoparticles, grown in the gas phase, are known to arrange in chains and bracelet-like rings due to the long-range dipolar interaction between the ferromagnetic (or super-paramagnetic) particles. We investigate the dynamics and thermodynamics of such magnetic dipolar nanoparticles for low densities using molecular dynamics simulations and analyze the influence of temperature and external magnetic fields on two- and three-dimensional systems. The obtained phase diagrams can be understood by using simple energetic arguments.Comment: 6 pages, 6 figure

    Near-wall velocity measurements by Particle-Shadow-Tracking

    Get PDF
    We report a new method to measure the velocity of a fluid in the vicinity of a wall. The method, that we call Particle-Shadow Tracking (PST), simply consists in seeding the fluid with a small number of fine tracer particles of density close to that of the fluid. The position of each particle and of its shadow on the wall are then tracked simultaneously, allowing one to accurately determine the distance separating tracers from the wall and therefore to extract the velocity field. We present an application of the method to the determination of the velocity profile inside a laminar density current flowing along an inclined plane

    Spherical designs from norm-3 shell of integral lattices

    Full text link
    A set of vectors all of which have a constant (non-zero) norm value in an Euclidean lattice is called a shell of the lattice. Venkov classified strongly perfect lattices of minimum 3 (R\'{e}seaux et "designs" sph\'{e}rique, 2001), whose minimal shell is a spherical 5-design. This note considers the classification of integral lattices whose shells of norm 3 are 5-designs.Comment: 10 pages, http://www2.math.kyushu-u.ac.jp/~j.shigezumi

    3D co-cultures of osteoblasts and endothelial cells in DegraPol foam: Histological and high field MRI analyses of pre-engineered capillary networks in bone grafts

    Full text link
    Tissue engineering of bone grafts was addressed in a critical size model on the chick chorioallantoic membrane model (CAM assay), using DegraPol(R) (DP) foam as scaffold material. The scaffolds were seeded with cultures of human osteoblasts (OB) and human en notdo notthelial cells (EC), respectively, or with a co-culture of the two cell types (control: no cells). In vitro samples (7 days cultivation) and ex vivo CAM samples at incubation day 15 (ID 15) were analyzed by high field magnetic resonance imaging (MRI) and histology. The co-culture system performed best with respect to perfusion, as assessed by contrast-enhanced MRI using Gd-DTPA. The scaffold seeded by the co-culture supported an increased vascular ingrowth, which was confirmed by histological analysis. DP foam is a suitable scaffold for bone tissue engineering and the MRI technique allows for non-destructive and quantitative assessment of perfusion capability during early stages of bone forming constructs

    Turbulent boundary layers and channels at moderate Reynolds numbers

    Get PDF
    The behaviour of the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows is analysed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels. The 99 % boundary-layer thickness is used as a reasonable analogue of the channel half-width, but the two flows are found to be too different for the analogy to be complete. In agreement with previous results, it is found that the fluctuations of the transverse velocities and of the pressure are stronger in the boundary layer, and this is traced to the pressure fluctuations induced in the outer intermittent layer by the differences between the potential and rotational flow regions. The same effect is also shown to be responsible for the stronger wake component of the mean velocity profile in external flows, whose increased energy production is the ultimate reason for the stronger fluctuations. Contrary to some previous results by our group, and by others, the streamwise velocity fluctuations are also found to be higher in boundary layers, although the effect is weaker. Within the limitations of the non-parallel nature of the boundary layer, the wall-parallel scales of all the fluctuations are similar in both the flows, suggesting that the scale-selection mechanism resides just below the intermittent region, y/¿=0.3¿0.5. This is also the location of the largest differences in the intensities, although the limited Reynolds number of the boundary-layer simulation (Re¿ ¿ 2000) prevents firm conclusions on the scaling of this location. The statistics of the new boundary layer are available from http://torroja.dmt.upm.es/ftp/blayers/

    Проблемы теневой экономики в Украине

    Get PDF
    Brain inflammation plays a central role in multiple sclerosis (MS). Besides lymphocytes, the astroglia and microglia mainly contribute to the cellular composition of the inflammatory infiltrate in MS lesions. Several studies were able to demonstrate that cortical lesions are characterized by lower levels of inflammatory cells among activated microglia/macrophages. The underlying mechanisms for this difference, however, remain to be clarified. In the current study, we compared the kinetics and extent of microglia and astrocyte activation during early and late cuprizone-induced demyelination in the white matter tract corpus callosum and the telencephalic gray matter. Cellular parameters were related to the expression profiles of the chemokines Ccl2 and Ccl3. We are clearly able to demonstrate that both regions are characterized by early oligodendrocyte stress/apoptosis with concomitant microglia activation and delayed astrocytosis. The extent of microgliosis/astrocytosis appeared to be greater in the subcortical white matter tract corpus callosum compared to the gray matter cortex region. The same holds true for the expression of the key chemokines Ccl2 and Ccl3. The current study defines a model to study early microglia activation and to investigate differences in the neuroinflammatory response of white vs. gray matter

    Reactivity and rotational spectra: The old concept of substitution effects

    Get PDF
    The internal rotation of methyl groups and nuclear quadrupole moments of the halogens Cl, Br, I in o-halotoluenes cause complex spectral fine and hyperfine structures in rotational spectra arising from angular momentum coupling. Building on the existing data regarding o-fluorotoluene and o-chlorotoluene, the investigations of o-bromotoluene and o-iodotoluene allow for a complete analysis of the homologous series of o-halogenated toluenes. The trend in the methyl barriers to internal rotation rising with the size of the halogen can be rationalised by repulsion effects as predicted by MP2 calculations. Furthermore, the analysis of the observed quadrupole coupling serves as a quantitative intra-molecular probe, e.g. for the explanation of the relative reaction yields in the nitration of halotoluenes, related to the different π-bond character of the C-X bond depending on the position of substitution
    corecore