503 research outputs found

    Serological diagnosis of Q fever endocarditis

    Get PDF
    The diagnosis of Q fever endocarditis cannot be made by bacterial cultures and necessitates serological identification of specific antibodies to Coxiella burnetii which stimulates mainly the production of anti-phase II antibodies during the acute diséase, but primarily anti-phase I antibodies in endocarditis. Indirect micro-immunofluorescence allows rapid detection of specific IgA, IgG and IgM. The results of serological analyses of 191 acute cases of Q fever were compared with those of 8 cases of Coxiella burnetii endocarditis. All sera were evaluated by complement fixation and microimmunofluorescence tests. The highest titre differences between primary Q fever and Q fever endocarditis were observed with anti-phase IIgA and IgG antibodies measured by microimmunofluorescence followed by anti-phase I antibodies measured by complement fixation tests. Anti-phase IIgG and IgM titres were consistently higher than anti-phase II titres in endocarditis. The reverse is true in acute Q fever. In addition, anti-phase I Ig A appeared to be diagnostic for Coxiella burnetii endocarditis. Accordingly we recommend the testing of these specific IgA, IgG, and IgM by microimmunofluorescence in cases of culture-negative endocarditis. These tests could also prove useful for following the development of Coxiella burnetii endocarditis in patients under treatmen

    Lyme disease in Wisconsin: epidemiologic, clinical, serologic, and entomologic findings.

    Get PDF
    In 1980-82, 80 individuals (71 Wisconsin residents) had confirmed Lyme disease (LD-c) reported; 39 additional patients had probable or possible LD. All cases of LD-c occurred during May-November; 73 percent occurred during June-July; 54 (68 percent) occurred in males. The mean age was 38.7 years (range, 7-77 years). Among LD-c patients, likely exposure to the presumed vector Ixodes dammini (ID) occurred in 22 different Wisconsin counties. Antibodies to the ID spirochete that causes LD occurred in 33 of 49 LD-c cases versus 0 of 18 in ill controls (p less than .001) and in 13 of 26 LD-c cases treated with penicillin or tetracycline versus 16 of 19 LD-c cases not treated. Early antibiotic therapy appears to blunt the antibody response to the ID spirochete. Regional tick surveys conducted in Wisconsin during each November in 1979-82 have demonstrated regions of greater density of ID. Utilizing comparable tick collection in these surveys, increases were noted in the percentage of deer with ID from 24 percent (31/128) in 1979 to 38 percent (58/152) in 1981, in the standardized mean value of ID/deer from 1.0 in 1979 to 2.2 in 1981, in the percentage of ID of the total ticks collected from 13 percent in 1979 to 71 percent in 1981, or in the ratio of ID to Dermacentor albipictus ticks from 0.14 in 1979 to 2.44 in 1981. However, a reduction in the density of ID/deer was noted generally throughout Wisconsin in 1982 when compared to 1981. LD is widespread in Wisconsin, with ecologic and clinical features similar to those occurring along the eastern seaboard

    Dissemination of Spotted Fever Rickettsia Agents in Europe by Migrating Birds

    Get PDF
    Migratory birds are known to play a role as long-distance vectors for many microorganisms. To investigate whether this is true of rickettsial agents as well, we characterized tick infestation and gathered ticks from 13,260 migratory passerine birds in Sweden. A total of 1127 Ixodes spp. ticks were removed from these birds and the extracted DNA from 957 of them was available for analyses. The DNA was assayed for detection of Rickettsia spp. using real-time PCR, followed by DNA sequencing for species identification. Rickettsia spp. organisms were detected in 108 (11.3%) of the ticks. Rickettsia helvetica, a spotted fever rickettsia associated with human infections, was predominant among the PCR-positive samples. In 9 (0.8%) of the ticks, the partial sequences of 17kDa and ompB genes showed the greatest similarity to Rickettsia monacensis, an etiologic agent of Mediterranean spotted fever-like illness, previously described in southern Europe as well as to the Rickettsia sp.IrITA3 strain. For 15 (1.4%) of the ticks, the 17kDa, ompB, gltA and ompA genes showed the greatest similarity to Rickettsia sp. strain Davousti, Rickettsia japonica and Rickettsia heilongjiangensis, all closely phylogenetically related, the former previously found in Amblyomma tholloni ticks in Africa and previously not detected in Ixodes spp. ticks. The infestation prevalence of ticks infected with rickettsial organisms was four times higher among ground foraging birds than among other bird species, but the two groups were equally competent in transmitting Rickettsia species. The birds did not seem to serve as reservoir hosts for Rickettsia spp., but in one case it seems likely that the bird was rickettsiemic and that the ticks had acquired the bacteria from the blood of the bird. In conclusion, migratory passerine birds host epidemiologically important vector ticks and Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents and their diseases

    The Eco-Epidemiology of Pacific Coast Tick Fever in California

    Get PDF
    Rickettsia philipii (type strain “Rickettsia 364D”), the etiologic agent of Pacific Coast tick fever (PCTF), is transmitted to people by the Pacific Coast tick, Dermacentor occidentalis. Following the first confirmed human case of PCTF in 2008, 13 additional human cases have been reported in California, more than half of which were pediatric cases. The most common features of PCTF are the presence of at least one necrotic lesion known as an eschar (100%), fever (85%), and headache (79%); four case-patients required hospitalization and four had multiple eschars. Findings presented here implicate the nymphal or larval stages of D. occidentalis as the primary vectors of R. philipii to people. Peak transmission risk from ticks to people occurs in late summer. Rickettsia philipii DNA was detected in D. occidentalis ticks from 15 of 37 California counties. Similarly, non-pathogenic Rickettsia rhipicephali DNA was detected in D. occidentalis in 29 of 38 counties with an average prevalence of 12.0% in adult ticks. In total, 5,601 ticks tested from 2009 through 2015 yielded an overall R. philipii infection prevalence of 2.1% in adults, 0.9% in nymphs and a minimum infection prevalence of 0.4% in larval pools. Although most human cases of PCTF have been reported from northern California, acarological surveillance suggests that R. philipii may occur throughout the distribution range of D. occidentalis

    Potential role of ticks as vectors of bluetongue virus

    Get PDF
    When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four species of ixodid ticks (Ixodes ricinus, Ixodes hexagonus, Dermacentor reticulatus and Rhipicephalus bursa) and one soft tick species, Ornithodoros savignyi, ingested BTV8-containing blood either through capillary feeding or by feeding on artificial membranes. The virus was taken up by the ticks and was found to pass through the gut barrier and spread via the haemolymph into the salivary glands, ovaries and testes, as demonstrated by real-time reverse transcriptase PCR (PCR-test). BTV8 was detected in various tissues of ixodid ticks for up to 21 days post feeding and in Ornithodoros ticks for up to 26 days. It was found after moulting in adult Ixodes hexagonus and was also able to pass through the ovaries into the eggs of an Ornithodoros savignyi tick. This study demonstrates that ticks can become infected with bluetongue virus serotype 8. The transstadial passage in hard ticks and transovarial passage in soft ticks suggest that ticks have potential vectorial capacity for bluetongue virus. Further studies are required to investigate transmission from infected ticks to domestic livestock. This route of transmission could provide an additional clue in the unresolved mystery of the epidemiology of Bluetongue in Europe by considering ticks as a potential overwintering mechanism for bluetongue virus

    Outer Surface Protein C Is a Dissemination-Facilitating Factor of Borrelia burgdorferi during Mammalian Infection

    Get PDF
    The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection.In this study, a borrelial mutant producing an OspC antigen with a 5-amino-acid deletion was generated. The deletion didn't significantly increase the 50% infectious dose or reduce the tissue bacterial burden during infection of the murine host, indicating that the truncated OspC can effectively protect B. burgdorferi against innate elimination. However, the deletion greatly impaired the ability of B. burgdorferi to disseminate to remote tissues after inoculation into mice.The study indicates that OspC plays an important role in dissemination of B. burgdorferi during mammalian infection

    Common and Unique Contributions of Decorin-Binding Proteins A and B to the Overall Virulence of Borrelia burgdorferi

    Get PDF
    As an extracellular bacterium, the Lyme disease spirochete Borrelia burgdorferi resides primarily in the extracellular matrix and connective tissues and between host cells during mammalian infection, where decorin and glycosaminoglycans are abundantly found, so its interactions with these host ligands potentially affect various aspects of infection. Decorin-binding proteins (Dbps) A and B, encoded by a 2-gene operon, are outer surface lipoproteins with similar molecular weights and share approximately 40% identity, and both bind decorin and glycosaminoglycans. To investigate how DbpA and DbpB contribute differently to the overall virulence of B. burgdorferi, a dbpAB mutant was modified to overproduce the adhesins. Overproduction of either DbpA or DbpB resulted in restoration of the infectivity of the mutant to the control level, measured by 50% infectious dose (ID50), indicating that the two virulence factors are interchangeable in this regard. Overproduction of DbpA also allowed the mutant to disseminate to some but not all distal tissues slightly slower than the control, but the mutant with DbpB overproduction showed severely impaired dissemination to all tissues that were analyzed. The mutant with DbpA overproduction colonized all tissues, albeit generating bacterial loads significantly lower than the control in heart and joint, while the mutant overproducing DbpB remained severely defective in heart colonization and registered bacterial loads substantially lower than the control in joint. Taken together, the study indicated that DbpA and DbpB play a similar role in contribution to infectivity as measured by ID50 value but contribute differently to dissemination and tissue colonization

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∼130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites
    corecore