14 research outputs found

    Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa

    No full text
    Four new homoisoflavonoids, 7-O-methyl-8-demethoxy-3′-hydroxy-3,9-dihydropunctatin (4), 6-hydroxy-8-demethoxy-4′-O-methyl-3,9-dihydropunctatin (8), 7,4′-O-dimethyl-8-demethoxy-3,3′-dihydroxy-3,9-dihydropunctatin (13), and 7-O-methyl-3-hyroxy-3,9-dihydropunctatin (14) were identified from a chloroform extract of the bulbs of Bellevalia flexuosa, along with 13 known analogues. The structures were determined by analysis of HRMS and NMR data, while ECD spectroscopy enabled the assignment of the absolute configurations of the new compounds 4, 8, 13 and 16. The cytotoxic activities of the isolated compounds (1–17) were evaluated using a panel of human cancer cell lines. Compounds 2 and 7 were the most potent against the MDA-MB-435 (melanoma) cancer cell line with IC50 values of 1.6 and 2.0 μM, respectively, and were essentially equipotent against the OVCAR3 (ovarian) cancer cell line with IC50 values of 9.5 and 10.8 μM, respectively. However, compound 7, with an IC50 value of 3.6 μM, was the most potent against the MDA-MB-231 (breast) cancer cell line.This research was supported, in part, by the Deanship of Research, Jordan University of Science and Technology , Irbid, Jordan (Grant No. 284/2017 ) and via program project grant P01 CA125066 from the National Cancer Institute / National Institutes of Health , Bethesda, MD, USA. Appendix AScopu

    Biological characterization of non-steroidal progestins from botanicals used for women’s health

    No full text
    Progesterone plays a central role in women’s reproductive health. Synthetic progestins, such as medroxyprogesterone acetate (MPA) are often used in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Although MPA is clinically effective, it also promiscuously binds to androgen and glucocorticoid receptors (AR/GR) leading to many undesirable side effects including cardiovascular diseases and breast cancers. Therefore, identifying alternative progestins is clinically significant. The purpose of this study was to biologically characterize non-steroidal progestins from botanicals by investigating their interaction and activation of progesterone receptor (PR). Eight botanicals commonly used to alleviate menopausal symptoms were investigated to determine if they contain progestins using a progesterone responsive element (PRE) luciferase reporter assay and a PR polarization competitive binding assay. Red clover extract stimulated PRE-luciferase and bound to PR. A library of purified compounds previously isolated from red clover was screened using the luciferase reporter assay. Kaempferol identified in red clover and a structurally similar flavonoid, apigenin, bound to PR and induced progestegenic activity and P4 regulated genes in breast epithelial cells and human endometrial stromal cells (HESC). Kaempferol and apigenin demonstrated higher progestegenic potency in the HESC compared to breast epithelial cells. Furthermore, phytoprogestins were able to activate P4 signaling in breast epithelial cells without downregulating PR expression. These data suggest that botanical extracts used for women’s health may contain compounds capable of activating progesterone receptor signaling
    corecore