4,286 research outputs found
A contribution to the chemical pathology of the lipoids
From the biological, and especially medical,
point of view no class of substances has in recent
years grown so rapidly in importance as the lipoide.
The purely chemical investigation of these substances
has been carried on by numerous observers since the
middle of last Century, but it is only during the last
twenty years, and especially the last ten, that any
great progress has been made. At the present day we
know thoroughly the constitution of several important
lipoide and we are able, in a general way, to make a reasonable classification of those which are less well
known.Mayer and Overton's theory of narcosis, the explanation of the pharmacology of many drugs, and the
numerous physiological theories dependant upon the
physics of a cell membrane have all helped to increase
the importance of a thorough knowledge of the lipoide
in physiology, and have stimulated numerous researches,
but the role played by these substances in pathological processes remains almost uninvestigated
Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission
A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight
Bostonia. Volume 11
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Polyethylene Oxide Nanofiber Production by Electrospinning
Electrospinning is an inexpensive technique that is used to produce nanofibers for a variety of applications. In electrospinning, a polymer solution is dispensed from a hypodermic-like syringe where an intense electric field attracts the solution to a collector while drawing the polymer into a very thin fiber. The diameter of the fiber can be controlled by tuning the process parameters such as the applied electric field, solution flow rate, distance between syringe tip and collector, and the collector geometry. In this paper we describe results from electrospinning poly(ethylene oxide) (PEO), a likely candidate for applications involving scaffolding for tissue engineering. The PEO nanofibers were fabricated from different polymer solution concentrations ranging from 14% - 22% (by weight). Each sample was then imaged using a scanning electron microscope. The morphology of the fibers produced from varying solution concentrations is discussed
Redefining the Missing Satellites Problem
Numerical simulations of Milky-Way size Cold Dark Matter (CDM) halos predict
a steeply rising mass function of small dark matter subhalos and a substructure
count that greatly outnumbers the observed satellites of the Milky Way. Several
proposed explanations exist, but detailed comparison between theory and
observation in terms of the maximum circular velocity (Vmax) of the subhalos is
hampered by the fact that Vmax for satellite halos is poorly constrained. We
present comprehensive mass models for the well-known Milky Way dwarf
satellites, and derive likelihood functions to show that their masses within
0.6 kpc (M_0.6) are strongly constrained by the present data. We show that the
M_0.6 mass function of luminous satellite halos is flat between ~ 10^7 and 10^8
M_\odot. We use the ``Via Lactea'' N-body simulation to show that the M_0.6
mass function of CDM subhalos is steeply rising over this range. We rule out
the hypothesis that the 11 well-known satellites of the Milky Way are hosted by
the 11 most massive subhalos. We show that models where the brightest
satellites correspond to the earliest forming subhalos or the most massive
accreted objects both reproduce the observed mass function. A similar analysis
with the newly-discovered dwarf satellites will further test these scenarios
and provide powerful constraints on the CDM small-scale power spectrum and warm
dark matter models.Comment: 8 pages, 6 figure
Eutectic Colony Formation: A Stability Analysis
Experiments have widely shown that a steady-state lamellar eutectic
solidification front is destabilized on a scale much larger than the lamellar
spacing by the rejection of a dilute ternary impurity and forms two-phase cells
commonly referred to as `eutectic colonies'. We extend the stability analysis
of Datye and Langer for a binary eutectic to include the effect of a ternary
impurity. We find that the expressions for the critical onset velocity and
morphological instability wavelength are analogous to those for the classic
Mullins-Sekerka instability of a monophase planar interface, albeit with an
effective surface tension that depends on the geometry of the lamellar
interface and, non-trivially, on interlamellar diffusion. A qualitatively new
aspect of this instability is the occurence of oscillatory modes due to the
interplay between the destabilizing effect of the ternary impurity and the
dynamical feedback of the local change in lamellar spacing on the front motion.
In a transient regime, these modes lead to the formation of large scale
oscillatory microstructures for which there is recent experimental evidence in
a transparent organic system. Moreover, it is shown that the eutectic front
dynamics on a scale larger than the lamellar spacing can be formulated as an
effective monophase interface free boundary problem with a modified
Gibbs-Thomson condition that is coupled to a slow evolution equation for the
lamellar spacing. This formulation provides additional physical insights into
the nature of the instability and a simple means to calculate an approximate
stability spectrum. Finally, we investigate the influence of the ternary
impurity on a short wavelength oscillatory instability that is already present
at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes;
references adde
Attentive Learning of Sequential Handwriting Movements: A Neural Network Model
Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
Rescaling multipartite entanglement measures for mixed states
A relevant problem regarding entanglement measures is the following: Given an
arbitrary mixed state, how does a measure for multipartite entanglement change
if general local operations are applied to the state? This question is
nontrivial as the normalization of the states has to be taken into account.
Here we answer it for pure-state entanglement measures which are invariant
under determinant 1 local operations and homogeneous in the state coefficients,
and their convex-roof extension which quantifies mixed-state entanglement. Our
analysis allows to enlarge the set of mixed states for which these important
measures can be calculated exactly. In particular, our results hint at a
distinguished role of entanglement measures which have homogeneous degree 2 in
the state coefficients.Comment: Published version plus one important reference (Ref. [39]
An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation
[Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology
BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization
BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation
in the cosmic microwave background at 95 GHz. It adopts the methodology of
BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient
resolution to search for signatures of the inflation-induced cosmic
gravitational-wave background while utilizing a compact design for ease of
construction and to facilitate the characterization and mitigation of
systematics. However, BICEP3 represents a significant breakthrough in
per-receiver sensitivity, with a focal plane area 5 larger than a
BICEP2/Keck Array receiver and faster optics ( vs. ).
Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive
cold alumina filters and lenses were developed and implemented for its optics.
The camera consists of 1280 dual-polarization pixels; each is a pair of
orthogonal antenna arrays coupled to transition-edge sensor bolometers and read
out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15
season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013),
and will significantly enhance spectral separation of primordial B-mode power
from that of possible galactic dust contamination in the BICEP2 observation
patch.Comment: 12 pages, 5 figures. Presented at SPIE Astronomical Telescopes and
Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE
Volume 915
- …