29 research outputs found

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γppπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ+pK++Λ\vec\gamma + p \to K^+ + \vec\Lambda and γ+pK++Σ0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for 0.85<cosθK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the Λ\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} Λ\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review

    Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region

    Full text link
    The (W,Q2)-dependence of the ratio of inclusive electron scattering cross sections for 15N/12C was determined in the kinematic range 0.8<W<2 GeV and 0.2<Q2<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab. The ratios exhibit only slight resonance structure, in agreement with a simple phenomenological model and an extrapolation of DIS ratios to low Q2. Ratios of 4He/12C using 1.6 to 2.5 GeV electrons were measured with very high statistical precision, and were used to correct for He in the N and C targets. The (W,Q2) dependence of the 4He/12C ratios is in good agreement with the phenomenological model, and exhibit significant resonance structure centered at W=0.94, 1.23 and 1.5 GeV.Comment: 13 pages, 2 figures. Significantly shortened version. Results unchanged. Small additions for Phys. Rev.

    Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences

    Get PDF
    International audiencePurpose At the global scale, soil contamination with persistent metals such as lead (Pb), zinc (Zn), and copper (Cu) induces a serious threat of entering the human food chain. In the recent past, different natural and synthetic compounds have been used to immobilizemetals in soil environments. However, the mechanisms involved in amendment-induced immobilization of metals in soil remained unclear. The objective of the present work was therefore to determine the mechanisms involved in metal-phosphates formation in the rhizospheric soils of pea and tomato currently cultivated in kitchen gardens. Materials and methods Pea and tomato were cultivated on a soil polluted by past industrial activities with Pb and Zn under two kinds of phosphate (P) amendments: (1) solid hydroxyapatite and (2) KH2PO4. The nature and quantities of metal-P formed in the rhizospheric soils were studied by using the selective chemical extractions and employing the combination of X-ray fluorescence micro-spectroscopy, scanning electron microscopy, and electron microprobe methods. Moreover, the influence of soil pH and organic acids excreted by plant roots on metal-P complexes formation was studied. Results and discussion Our results demonstrated that P amendments have no effect on metal-P complex formation in the absence of plants. But, in the presence of plants, P amendments cause Pb and Zn immobilization by forming metal-P complexes. Higher amounts of metal-P were formed in the pea rhizosphere compared to the tomato rhizosphere and in the case of soluble P compared to the solid amendment. The increase in soil-metal contact time enhanced metal-P formation. Conclusions The different forms of metal-P formed for the different plants under two kinds of P amendments indicate that several mechanisms are involved in metal immobilization. Metal-P complex formation in the contaminated soil depends on the type of P amendment added, duration of soil-plant contact, type of plant species, and excretion of organic acids by the plant roots in the rhizosphere
    corecore