16 research outputs found

    Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus

    Get PDF
    Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance

    Detection of kdr and ace-1 mutations in wild populations of Anopheles arabiensis and An. melas in a residual malaria transmission area of Senegal.

    Get PDF
    In the central western Senegal, malaria transmission has been reduced low due to the combination of several effective control interventions. However, despite this encouraging achievement, residual malaria transmission still occurring in few areas, mainly ensured by An. arabiensis and An. melas. The resurgence or the persistence of the disease may have originated from the increase and the spread of insecticide resistance genes among natural malaria vectors populations. Therefore, assessing the status and mechanisms of insecticides resistance among targeted malaria vectors is of highest importance to better characterize factors underlying the residual transmission where it occurs. Malaria vectors were collected from three selected villages using nocturnal human landing catches (HLC) and pyrethrum spray collections (PSC) methods. An. gambiae s.l. specimens were identified at the species level then genotyped for the presence of kdr-west (L1014F), kdr-east (L1014S) and ace-1R mutations by qPCR. An. arabiensis (69.36%) and An. melas (27.99%) were the most common species of the Gambiae complex in the study area. Among An. arabiensis population, the allelic frequency of the kdr-east (22.66%) was relatively higher than for kdr-west mutation (9.96%). While for An. melas populations, the overall frequencies of both mutations were very low, being respectively 1.12% and 0.40% for the L1014S and L1014F mutations. With a global frequency of 2%, only the heterozygous form of the G119S mutation was found only in An. arabiensis and in all the study sites. The widespread occurrence of the kdr mutation in both An. arabiensis and An. melas natural populations, respectively the main and focal vectors in the central-western Senegal, may have contributed to maintaining malaria transmission in the area. Thus, compromising the effectiveness of pyrethroids-based vector control measures and the National Elimination Goal. Therefore, monitoring and managing properly insecticide resistance became a key programmatic intervention to achieve the elimination goal where feasible, as aimed by Senegal. Noteworthy, this is the first report of the ace-1 mutation in natural populations of An. arabiensis from Senegal, which need to be closely monitored to preserve one of the essential insecticide classes used in IRS to control the pyrethroids-resistant populations

    Evolution of the Ace-1 and Gste2 mutations and their potential impact on the use of carbamate and organophosphates in IRS for controlling Anopheles gambiae s.l., the major malaria mosquito in Senegal

    No full text
    Widespread of insecticide resistance amongst the species of the Anopheles gambiae complex continues to threaten vector control in Senegal. In this study, we investigated the presence and evolution of the Ace-1 and Gste2 resistance genes in natural populations of Anopheles gambiae s.l., the main malaria vector in Senegal. Using historical samples collected from ten sentinel health districts, this study focused on three different years (2013, 2017, and 2018) marking the periods of shift between the main public health insecticides families (pyrethroids, carbamates, organophosphates) used in IRS to track back the evolutionary history of the resistance mutations on the Ace-1 and Gste2 loci. The results revealed the presence of four members of the Anopheles gambiae complex, with the predominance of An. arabiensis followed by An. gambiae, An. coluzzii, and An. gambiae–coluzzii hybrids. The Ace-1 mutation was only detected in An. gambiae and An. gambiae–coluzzii hybrids at low frequencies varying between 0.006 and 0.02, while the Gste2 mutation was found in all the species with a frequency ranging between 0.02 and 0.25. The Ace-1 and Gste2 genes were highly diversified with twenty-two and thirty-one different haplotypes, respectively. The neutrality tests on each gene indicated a negative Tajima’s D, suggesting the abundance of rare alleles. The presence and spread of the Ace-1 and Gste2 resistance mutations represent a serious threat to of the effectiveness and the sustainability of IRS-based interventions using carbamates or organophosphates to manage the widespread pyrethroids resistance in Senegal. These data are of the highest importance to support the NMCP for evidence-based vector control interventions selection and targeting
    corecore