752 research outputs found

    Island size distributions in submonolayer growth: successful prediction by mean field theory with coverage dependent capture numbers

    Full text link
    We show that mean-field rate equations for submonolayer growth can successfully predict island size distributions in the pre-coalescence regime if the full dependence of capture numbers on both the island size and the coverage is taken into account. This is demonstrated by extensive Kinetic Monte Carlo simulations for a growth kinetics with hit and stick aggregation. A detailed analysis of the capture numbers reveals a nonlinear dependence on the island size for small islands. This nonlinearity turns out to be crucial for the successful prediction of the island size distribution and renders an analytical treatment based on a continuum limit of the mean-field rate equations difficult.Comment: 4 pages, 4 figue

    Higher-Power Coherent and Squeezed States

    Get PDF
    A closed form expression for the higher-power coherent states (eigenstates of aja^{j}) is given. The cases j=3,4 are discussed in detail, including the time-evolution of the probability densities. These are compared to the case j=2, the even- and odd-coherent states. We give the extensions to the "effective" displacement-operator, higher-power squeezed states and to the ladder-operator/minimum-uncertainty, higher-power squeezed states. The properties of all these states are discussed.Comment: 23 pages including 9 figures. To be published in Optics Communication

    Learning a Sparse Representation of Barron Functions with the Inverse Scale Space Flow

    Full text link
    This paper presents a method for finding a sparse representation of Barron functions. Specifically, given an L2L^2 function ff, the inverse scale space flow is used to find a sparse measure μ\mu minimising the L2L^2 loss between the Barron function associated to the measure μ\mu and the function ff. The convergence properties of this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer with O(1/t)\mathcal{O}(1/t), and in the case of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant. This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly fine discretizations converge to the optimum on the full parameter space.Comment: 30 pages, 0 figure

    Learning a Sparse Representation of Barron Functions with the Inverse Scale Space Flow

    Get PDF
    This paper presents a method for finding a sparse representation of Barron functions. Specifically, given an L2L^2 function ff, the inverse scale space flow is used to find a sparse measure μ\mu minimising the L2L^2 loss between the Barron function associated to the measure μ\mu and the function ff. The convergence properties of this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer with O(1/t)\mathcal{O}(1/t), and in the case of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant. This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly fine discretizations converge to the optimum on the full parameter space

    ATPase mechanism of the 5'-3' DNA helicase, RecD2: evidence for a pre-hydrolysis conformation change

    Get PDF
    The superfamily 1 helicase, RecD2, is a monomeric, bacterial enzyme with a role in DNA repair, but with 5'-3' activity unlike most enzymes from this superfamily. Rate constants were determined for steps within the ATPase cycle of RecD2 in the presence of ssDNA. The fluorescent ATP analog, mantATP (2'(3')-O-(N-methylanthraniloyl)ATP), was used throughout to provide a complete set of rate constants and determine the mechanism of the cycle for a single nucleotide species. Fluorescence stopped-flow measurements were used to determine rate constants for adenosine nucleotide binding and release, quenched-flow measurements were used for the hydrolytic cleavage step, and the fluorescent phosphate biosensor was used for phosphate release kinetics. Some rate constants could also be measured using the natural substrate, ATP, and these suggested a similar mechanism to that obtained with mantATP. The data show that a rearrangement linked to Mg(2+) coordination, which occurs before the hydrolysis step, is rate-limiting in the cycle and that this step is greatly accelerated by bound DNA. This is also shown here for the PcrA 3'-5' helicase and so may be a general mechanism governing superfamily 1 helicases. The mechanism accounts for the tight coupling between translocation and ATPase activity

    Origin and pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma as revealed by global gene expression analysis

    Get PDF
    The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor {kappa}B activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies

    Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime

    Full text link
    We suggest a quantum nondemolition scheme to measure a quantized cavity field state using scattering of atoms in general Bragg regime. Our work extends the QND measurement of a cavity field from Fock state, based on first order Bragg deflection [9], to any quantum state based on Bragg deflection of arbitrary order. In addition a set of experimental parameters is provided to perform the experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal of physical society of Japa

    Risk estimators for choosing regularization parameters in ill-posed problems - Properties and limitations

    Get PDF
    This paper discusses the properties of certain risk estimators that recently regained popularity for choosing regularization parameters in ill-posed problems, in particular for sparsity regularization. They apply Stein’s unbiased risk estimator (SURE) to estimate the risk in either the space of the unknown variables or in the data space. We will call the latter PSURE in order to distinguish the two different risk functions. It seems intuitive that SURE is more appropriate for ill-posed problems, since the properties in the data space do not tell much about the quality of the reconstruction. We provide theoretical studies of both approaches for linear Tikhonov regularization in a finite dimensional setting and estimate the quality of the risk estimators, which also leads to asymptotic convergence results as the dimension of the problem tends to infinity. Unlike previous works which studied single realizations of image processing problems with a very low degree of ill-posedness, we are interested in the statistical behaviour of the risk estimators for increasing ill-posedness. Interestingly, our theoretical results indicate that the quality of the SURE risk can deteriorate asymptotically for ill-posed problems, which is confirmed by an extensive numerical study. The latter shows that in many cases the SURE estimator leads to extremely small regularization parameters, which obviously cannot stabilize the reconstruction. Similar but less severe issues with respect to robustness also appear for the PSURE estimator, which in comparison to the rather conservative discrepancy principle leads to the conclusion that regularization parameter choice based on unbiased risk estimation is not a reliable procedure for ill-posed problems. A similar numerical study for sparsity regularization demonstrates that the same issue appears in non-linear variational regularization approaches

    Directional Sinogram Inpainting for Limited Angle Tomography

    Get PDF
    In this paper we propose a new joint model for the reconstruction of tomography data under limited angle sampling regimes. In many applications of Tomography, e.g. Electron Microscopy and Mammography, physical limitations on acquisition lead to regions of data which cannot be sampled. Depending on the severity of the restriction, reconstructions can contain severe, characteristic, artefacts. Our model aims to address these artefacts by inpainting the missing data simultaneously with the reconstruction. Numerically, this problem naturally evolves to require the minimisation of a non-convex and non-smooth functional so we review recent work in this topic and extend results to fit an alternating (block) descent framework. \oldtext{We illustrate the effectiveness of this approach with numerical experiments on two synthetic datasets and one Electron Microscopy dataset.} \newtext{We perform numerical experiments on two synthetic datasets and one Electron Microscopy dataset. Our results show consistently that the joint inpainting and reconstruction framework can recover cleaner and more accurate structural information than the current state of the art methods

    Guest editorial: fatigue design and material defects

    Get PDF
    This issue of Fatigue and Fracture of Engineering Materials and Structures contains a collection of manuscripts presented at the Second International Symposium on Fatigue Design and Material Defects (FDMD II) held in Paris, France, on June 11 – 13, 2014 organized by the French Society for Metallurgy and Materials (SF2M) and the German Association for Materials Research and Testing (DVM)
    corecore