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Abstract

This paper presents a method for finding a sparse representation of Barron functions. Specifically,
given an L2 function f , the inverse scale space flow is used to find a sparse measure µ minimising the
L2 loss between the Barron function associated to the measure µ and the function f . The convergence
properties of this method are analysed in an ideal setting and in the cases of measurement noise and
sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer
with O(1/t), and in the case of measurement noise or sampling bias the optimum is achieved up to a
multiplicative or additive constant. This convergence is preserved on discretization of the parameter
space, and the minimizers on increasingly fine discretizations converge to the optimum on the full
parameter space.

keywords: Barron Space, Bregman Iterations, Sparse Neural Networks, Inverse Scale Space, Opti-
mization

1 Introduction

Most neural networks contain a subnetwork with fewer parameters that performs equally well [Ramanujan
et al., 2020], and some of these subnetworks have been found to generalise equally or even better than
their dense counterparts [Liu et al., 2019; Liu et al., 2021]. However, it is a priori hard to determine
which parameters of the network will be part of the subnetwork. Hence, various approaches have been
developed for finding well performing sparse neural network. They fall roughly in three categories. The
first is to add a term to the loss or regularizer that promotes sparsity. An example of this would be
LASSO, in which a ℓ1 regularizer is added [Tibshirani, 1996]. The second is to train a network first and
prune it afterwards, meaning weights are reduced with as little as possible influence on the performance
[Molchanov et al., 2017]. The third is to start with a sparse architecture, and add or remove neurons
during training [Dai et al., 2018].

One of the methods, which starts from a sparse architecture, is based on the Bregman iteration [Osher
et al., 2005]. This method has been introduced and thoroughly analysed for imaging and compressed
sensing [Burger et al., 2007; Yin et al., 2008; Burger et al., 2012]. The method works in these settings by
progressively adding more detail to the reconstructed images and signals, respectively. A limitation of the
original method is that it requires that often requires the problem to be convex. However, adaptations
of the method, e.g., the linearized variant in Benning et al., 2021; Bungert et al., 2022, where the loss is
replaced by a first order approximation, allows for a successful application to neural networks. A major
success of this method is that it is able to find an auto-encoder without ever explicitly defining an auto-
encoder like architecture [Bungert et al., 2021]. This shows that it has major potential for automatic
neural network architecture design tasks.

1.1 Related work

Bregman iterations were introduced in Osher et al., 2005 and further developed and analysed in Yin et al.,
2008; Bachmayr and Burger, 2009; Cai et al., 2009b; Cai et al., 2009a; Yin, 2010; Burger et al., 2007;
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Burger et al., 2012; Benning and Burger, 2018a as an algorithm to solve sparsity promoting regularisation
tasks in computer vision. Linearized Bregman iterations as introduced in Cai et al., 2009b; Yin et al.,
2008 can be seen as a generalization of the mirror descent algorithm [Nesterov, 1983; Beck & Teboulle,
2003] to the non-differentiable, convex case. More recently, variants of the original algorithm have been
applied in the context of machine learning, see, e.g., [Bungert et al., 2022; Bungert et al., 2021; Wang &
Benning, 2023a; Wang & Benning, 2023b].

Bregman iterations are the implicit Euler discretization of an inverse scale space flow. Going to the
continuous limit has helped to find easy implementations for relatively complex functionals like the total
variation functional, and has helped to obtain well-justified and simple stopping criteria [Burger et al.,
2006]. In the finite-dimensional case of sparse regularization (and further generalizations) an exact time
discretization can be found, which leads to efficient methods [Burger et al., 2012; Moeller & Burger,
2013]. We refer to Benning and Burger, 2018b for recent overview.

Similar to inverse scale space flow being the continuous limit of the Bregman iterations, we have that the
Barron spaces are the continuous limit of shallow neural network. It was proven that Barron functions
have bounded point evaluations [Bartolucci et al., 2023; Spek et al., 2023], Barron functions can be
approximated in Lp with rate O(m−1/p) [E. & Wojtowytsch, 2022], Barron spaces have a representer
theorem [Parhi & Nowak, 2021] and that Barron spaces are a kind of integral reproducing kernel Banach
spaces (RKBS), a Banach space analogue to reproducing kernel Hilbert spaces (RKHS) [Bartolucci et
al., 2023]. The spaces are parametrized by the activation function of the networks. The Barron spaces
associated to most of the commonly used non-periodic activation are embedded in the Barron space with
ReLU as activation function [Heeringa et al., 2023]. This Barron space together with the Barron spaces
associated to the RePU, the higher-order generalization of the ReLU, are strongly related to BV spaces
[E. & Wojtowytsch, 2022; Parhi & Nowak, 2021].

A fundamental open question in machine learning is how to find the best function representing your
data. For Barron spaces, this means finding the best measure µ representing the Barron function f .
Since the relation between µ and f is linear, this leads to a convex minimization problem. Based on
an alternative representation of Barron functions in probability space, the authors in Wojtowytsch, 2020
formulated a Wasserstein gradient flow for this problem based on the ideas of Chizat and Bach, 2018.
Under several assumptions, including omnidirectional initial conditions and satisfying the Morse–Sard
property, this leads to a unique solution π [Wojtowytsch, 2020]. However, not all Barron functions
satisfy the Morse–Sard property, placing a limit on the functions that can be represented with this
approach [Wojtowytsch, 2020]. Although this unique solution π represents the Barron function f , it is
not necessarily the probability measure for f with the smallest semi-norm. In order to find sparse neural
networks, there is a need for a method that minimizes this semi-norm as well.

1.2 Our contribution

In this work, we study the convergence and error analysis of finding the smallest measure µ such that
the Barron function Kµ is close to f using the inverse scale space. This is the continuous and infinite
dimensional version of finding a sparse shallow neural network approximating samples of f .

In particular, we consider the minimisation problem

µopt = arg min
µ†∈M(Ω)

J(µ†) (1.1a)

s.t. µ† ∈ arg min
µ∈M(Ω)

1

2
‖f −Kµ‖2L2(ρ) (1.1b)

where J encodes the Barron norm and acts as regularizer and Lρ is the adjoint of K. In section 2 we
define these operators more rigorously, and show that the associated inverse scale space is given by

µt = arg min
u∈∂J∗(pt)

Rf (µ) u0 = 0, (1.2a)

∂tpt = Lρ(f −Kµt) p0 = 0. (1.2b)

The data function f and the data distribution ρ are instance dependent, and the convergence behaviour
and the error analysis of eq. (1.2) are dependent on these. In machine learning, measurements of f are
noisy and the data sets always have a bias. Furthermore, computers are discrete beings. Hence, we
analyse eq. (1.2) in the following four cases:
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1. Noiseless and unbiased case; we have access to f and sample from ρ.

2. Noisy case; we have access to f δ with measurement noise instead to f , but we still want to find to
minimizer for f .

3. Biased case; we sample from ρε with a sampling bias instead of from ρ, but we still want to find
the minimizer for ρ.

4. Discretized case; the parameter space Ω is discretized and no longer continuous.

The first shows how well eq. (1.2) can be when we manage to reduce noise and sampling bias to a
minimum. The second shows how the methods deals with noise on the data function f . The third
provides a novel perspective on learning methods. It shows how well the method deals with a bias in the
sampling. In machine learning there is a large focus on computing the generalisation error of a method,
i.e. how large is the error you make when you solve eq. (1.1) with only n samples of ρ relative to using
ρ in its entirety. This is one way of having a bias in the sampling. Another bias that one could have as
the goal to classify animals based on images to determine whether they are suitable pets, but one has
no images of fish. Our method captures both of these biases in one go. The last shows that the method
behaves nicely when the parameter space Ω is discretized.

We show in section 2 that the eq. (1.2) is well-defined and determine its optimality conditions. After that
we discuss the aforementioned four cases in sections 3 to 6 respectively.

1.3 Background information

This section provides the relevant background information needed of Barron spaces and Bregman itera-
tions.

1.3.1 Barron spaces

Fix d ∈ N and σ as an element of C0,1(R) or the ReLU activation function max(0, x). Let X ⊆ R
d and

Ω ⊆ R
d
× R. Consider a probability measure ρ ∈ P(X ), and define

Kµ(x) =

∫

Ω

σ(a⊺x + b)dµ(a, b). (1.3)

for µ ∈ M(Ω). Barron space Bσ is the Banach space with functions of the form f = Kµ for some
µ ∈ M(Ω) and

‖f‖Bσ
=

{

infKµ=f

∫

Ω(1 + ‖w‖ + |b|)d|µ|(w, b) σ ∈ C0,1(R)

infKµ=f

∫

Ω
(‖w‖ + |b|)d|µ|(w, b) σ(x) = ReLU(x)

(1.4)

The functions in Barron space can be seen as infinitely wide or continuous versions of shallow neural
networks

f : X → R, x 7→
m
∑

i=1

ciσ(a⊺i x + bi) (1.5)

with ci ∈ R and (ai, bi) ∈ Ω [E et al., 2021]. Two embeddings are relevant for this work. They show that
Barron functions are nice enough to enable proper convergence.

Proposition 1.1 (Barron is Lipschitz; E and Wojtowytsch, 2020, theorem 3.3). If ρ ∈ P1(X ) is a
probability measure with finite first moments, then we have Lip(f) ≤ Lip(σ)‖f‖Bσ

for every f ∈ Bσ.

Proposition 1.2 (Barron Lp embedding; E and Wojtowytsch, 2020, theorem 3.7). If ρ ∈ Pq(X ) is a
probability measure with finite qth moments, then Bσ →֒ Lp(X , ρ) for all 1 ≤ p ≤ q.

1.3.2 Bregman iterations

Let H be some Banach space, U be a (closed subset of a) thereof, f ∈ H, J : U → R be convex, lower
semi-continuous and coercive, and Rf : U → R be convex, bounded from below and Fréchet differentiable.
The Bregman divergence1 between u, v ∈ H for p ∈ ∂J(v) is given by

Dp
J(u, v) = J(u) − J(v) − 〈p|u− v〉 . (1.6)

1The Bregman divergence is often called the Bregman distance, but it is in general neither symmetric nor does it satisfy
the triangle inequality.
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The Bregman iterations

uk = arg min
u∈U

D
pk−1

J (u, uk−1) + λRf (u) u0 = 0

pk = pk−1 − λ∂uRf (uk) p0 = 0, pk ∈ ∂J(uk)
(1.7)

with design parameter λ > 0 are an iterative 5-approximation algorithm for the bilevel minimization
problem

u† ∈ arg min
u∈U

J(u)

s.t. u ∈ arg min
ū∈U

Rf (ū).
(1.8)

The Bregman iterations converge monotonically to the optimal solution with worst case O( 1
k ) convergence

[Burger et al., 2007].

The inverse scale space flow can be derived from eq. (1.7) by taking the limit of λ ց 0. Before taking
the limit, observe that eq. (1.7) is equivalent to

uk = arg min
u∈U∩∂J∗(pk)

1

λ

(

J(u) − 〈pk−1|u〉

)

+ Rf (u) u0 = 0 (1.9a)

pk − pk−1

λ
= −∂uRf (uk) p0 = 0 (1.9b)

Note, that usually eq. (1.9b) has the subgradient constraint pk ∈ ∂J(µk) instead of eq. (1.9a) having
∂J∗(pk) as additional constraint. These two ways of writing the constraint are equivalent by Fenchel
duality. In the limit of λ ց 0, eq. (1.9b) can be seen as the Euler discretization of the flow equation

∂tpt = −∂uRf (ut), p0 = 0, (1.10)

and eq. (1.9a) will find a uk minimizing Rf (u) whilst enforcing that pt ∈ ∂J(ut) or equivalently ut ∈
∂J∗(pt) [Burger et al., 2006]. The inverse scale space is exactly this limit of λ ց 0 of the Bregman
iterations, i.e. the dynamical process given by

ut = arg min
u∈U∩∂J∗(pt)

Rf (u) u0 = 0, (1.11a)

∂tpt = −∂uRf (ut) p0 = 0. (1.11b)

1.4 Notation and definitions

Let R denote the real numbers, and N denote the natural numbers without 0. The space of all Radon
measures—regular, signed Borel measures with bounded total variation—on a locally compact Hausdorff
Ω is denoted by M(Ω). It is a Banach space with the norm

‖µ‖M(Ω) =

∫

Ω

d|µ|(x),

where |µ| is the total variation measure of µ. When Ω is compact and M(Ω) is equipped with the weak*-
topology, then M(Ω) is dual to C0(Ω), the space of continuous functions on Ω. When Ω is unbounded,
then it is dual to C0

0 (Ω), the space of continuous functions on Ω that go to zero at infinity. All Radon
measures µ ∈ M(Ω) have a polar decomposition, i.e. there exists a sgn{µ} ∈ L1(Ω, |µ|) with |sgn{µ}| ≤ 1
such that

dµ(x) = sgn{µ}(x)d|µ|(x).

The space of all probability measures on a set U with finite kth moments is denoted by Pk(U) ⊆ M(U).
The Wasserstein-1 metric between two probability measures ρ, π ∈ P1(Ω), can be computed by

W1(ρ, π) = sup

{
∫

Ω

f(ω)dρ(ω) −

∫

Ω

f(ω)dπ(ω)

∣

∣

∣

∣

f ∈ C0(Ω), Lip(f) ≤ 1

}

,

where Lip(f) denotes the Lipschitz constant of f . Given a set X , a positive number p ∈ [1,∞) and a
radon measure ρ ∈ M(X), we write Lp(ρ) instead of Lp(X, ρ). If U ⊂ V is a convex set, V is a locally
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convex space and J : U → R is a convex function, then the convex conjugate is written as J∗ and the
subgradient ∂J of J at u0 is given by

∂J(u0) =

{

v ∈ V ∗
∣

∣

∣

∣

J(u) − J(u0) ≥ 〈v|u− u0〉V ∗ ∀u ∈ U

}

.

(Fréchet) derivatives of a function or operator f are also denoted ∂f . If the derivative is a partial
derivative, then a subscript will be added to indicate the variable with which the derivative is taken.

2 Inverse scale space flow for Barron spaces

In this section, we start by defining the necessary functionals and operators to write down the inverse
scale space flow for Barron spaces. In section 2.1, we show how to get from the general form of the inverse
scale space in eq. (1.11) to eq. (2.3). Then, in section 2.2, we show that this flow is well-defined. Last,
in section 2.4, we derive several optimality conditions for the flow that are needed for the proofs of the
convergence rates later in this work.

Fix d ∈ N. Let X ⊆ R
d and Ω ⊆ R

d+1, ρ ∈ P2(X ) be a probability measure with bounded second
moment, σ ∈ C0,1(R) or σ(x) = max(0, x), V (a, b) = 1 + ‖a‖ + |b| and f ∈ L2(ρ), where we mean that
a ∈ R

d and b ∈ R when we write (a, b) ∈ Ω. Use these to define the operators

K : M(Ω) → L2(X , ρ), µ 7→

(

x 7→

∫

Ω

σ(a⊺x + b)dµ(a, b)

)

(2.1a)

Lρ : L2(X , ρ) → C(Ω), φ 7→

(

(a, b) 7→

∫

X
φ(x)σ(a⊺x + b)dρ(x)

)

(2.1b)

J : M(Ω) → [0,∞), µ 7→

∫

Ω

V (a, b)d|µ|(a, b) (2.1c)

Rf : M(Ω) → [0,∞), µ 7→
1

2
‖Kµ− f‖2L2(X ,ρ) (2.1d)

We consider the task of finding

µopt ∈ arg min
µ†∈M(Ω)

J(µ†) (2.2a)

s.t. µ† ∈ arg min
µ∈M(Ω)

Rf (µ) (2.2b)

The constraint in eq. (2.2b) says that we are looking for a measure µ such that Kµ represents the L2(ρ)
projection of f onto Barron space, and eq. (2.2a) highlights that we want the measure that induces
the Barron norm. We will search for the measure µopt using the inverse scale space flow. The flow
corresponding to eq. (2.2) is given by

µt = arg min
u∈∂J∗(pt)

Rf (µ) u0 = 0, (2.3a)

∂tpt = Lρ(f −Kµt) p0 = 0. (2.3b)

In the following, we will assume that every µ† we refer to has J(µ†) finite.

2.1 Derivation of the inverse scale space flow for Barron spaces

To derive the inverse scale space flow for Barron spaces, we start with eq. (1.7) and eq. (1.11). These
imply that the Bregman iterations and associated inverse scale space flow for eq. (2.2) are given by the
iterative process

µk = arg min
u∈M(Ω)

D
pk−1

J (µ, µk−1) + λRf (µ) µ0 = 0 (2.4a)

pk = pk−1 − λ∂µRf (µk) p0 = 0, pk = ∂J(µk) (2.4b)

and the dynamical system

µt = arg min
µ∈M(Ω)∩∂J∗(pt)

Rf (µ) µ0 = 0, (2.5a)
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

∂tpt = −∂µRf (µt) p0 = 0, (2.5b)

respectively. First, observe that ∂J∗(pt) ⊆ M(Ω). This shows that eq. (2.5a) and eq. (2.3a) match.
Before we show that eq. (2.5b) is the same as eq. (2.3b), we show that Lρ is in fact the adjoint of K.

Lemma 2.0.1. The adjoint Lρ is given by K, i.e. L⋆
ρ = K.

Proof. Let φ ∈ L2(X , ρ) and µ ∈ M(Ω), then, by Fubini–Tonelli

〈Kµ|φ〉L2(ρ) =

∫

Ω

∫

X
σ(a⊺x + b)dρ(x)φ(x)dµ(a, b)

=

∫

Ω

∫

X
φ(x)σ(a⊺x + b)dρ(x)dµ(a, b)

= 〈µ|Lρφ〉M(Ω) .

From the definition of the adjoint it follows that L⋆
ρ = K. Q.E.D.

Note that K is the adjoint for all Lρ with ρ ∈ P2(X ), but that the difference between the various Lρ is
the inner product used.

Proposition 2.1. The variational derivative of Rf is given by

∂µRf (µ) = Lρ(Kµ− f). (2.6)

Proof. Observe that

lim
‖ν‖M(Ω)→0

∣

∣

∣
Rf (µ + ν) −Rf (µ) − 〈∂µRf (µ)|ν〉M(Ω)

∣

∣

∣

‖ν‖M(Ω)

= lim
‖ν‖M(Ω)→0

∣

∣

∣

1
2‖K(µ + ν) − f‖2L2(ρ) −

1
2‖Kµ− f‖2L2(ρ) − 〈K∗(Kµ− f)|ν〉M(Ω)

∣

∣

∣

‖ν‖M(Ω)

≤ lim
‖ν‖M(Ω)→0

∣

∣

∣

1
2‖Kν‖2L2(ρ) − 〈Kµ− f |Kν〉L2(ρ) − 〈K∗(Kµ− f)|ν〉M(Ω)

∣

∣

∣

‖ν‖M(Ω)

triangle ineq.

= lim
‖ν‖M(Ω)→0

∣

∣

∣

1
2‖Kν‖2L2(ρ)

∣

∣

∣

‖ν‖M(Ω)

def. of adjoint

≤ lim
‖ν‖M(Ω)→0

1

2
‖K‖2op‖ν‖M(Ω) = 0.

Hence,
∂µRf (µ) = K∗(Kµ− f). (2.7)

Combining lemma 2.0.1 with eq. (2.7) finishes the proof. Q.E.D.

This shows that eq. (2.5b) is indeed the same as eq. (2.3b), and thus that eq. (2.5) is the same as eq. (2.3).

2.2 Existence

To show that the inverse scale space flow of eq. (2.3) has a solution, we use a theorem by Brezis[Brézis,
1973, theorem 3.1]. This theorem establishes that the differential inclusion equation

∂tut + But ∈ 0 (2.8)

given some initial condition u0 ∈ dom(B) := {u ∈ H | Bu 6= ∅} has a solution. Here, B is a maximally
monotone, possibly nonlinear and possibly multivalued function over a Hilbert space H . We show that
for a suitably chosen maximal operator B, the solution to eq. (2.8) exists, and that this solution is in fact
a solution to the inverse scale space flow of eq. (2.3).
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

The operators we need to show that are

A : C(Ω) → M(Ω), p 7→ arg min
µ∈∂χ{‖·‖∞≤1}(p)

Rf (µ), (2.9a)

B̃ : L2(ρ) → L2(ρ), r 7→ KA(V −1Lρr) − f (2.9b)

B : L2(ρ) → L2(ρ), r 7→ K∂J∗(Lρr) − f (2.9c)

Lemma 2.0.2. The operator B is maximal monotone.

Proof. J∗ is the Fenchel dual of J . Hence, J∗ is lower semi-continuous, convex and proper. Lρ is a
bounded linear operator, so J∗◦Lρ is also lower semi-continuous, convex and proper. Thus, r 7→ ∂J∗(Lρr)
is maximal monotone [Brezis, 1974]. Subtracting a constant from a maximal monotone operator preserves
maximal monotonicity, so B is maximal monotone. Q.E.D.

This means the operator B satisfies the requirements for Brezis, and we thus have a solution.

Proposition 2.2. For every x ∈ dom(B) there exists a unique function r : [0,∞) → L2(ρ) such that

1. r satisfies eq. (2.8) for almost every t ∈ (0,∞),

2. rt ∈ dom(B) for all t > 0,

3. rt is Lipschitz continuous on [0,∞) with ‖∂tu‖L∞([0,∞);L2(ρ) ≤ ‖B◦(x)‖,

4. r is right differentiable for all t ∈ (0,∞) and ∂+
t rt + B◦(rt) = 0 for all t ∈ (0,∞),

5. t 7→ B◦(rt) is right continuous and t 7→ ‖B◦(rt)‖ non-increasing,

where
B◦(rt) = arg min

r∈B(rt)

‖r‖L2(ρ). (2.10)

Proof. See theorem 3.1 of [Brézis, 1973]. Q.E.D.

This does not show that eq. (2.3) has a solution yet, since this satisfies eq. (2.8) with the operator B̃
whereas eq. (2.3) satisfies eq. (2.8) with the operator B.

Lemma 2.0.3. eq. (2.3) can be written as

∂trt + B(rt) = 0, r = 0. (2.11)

Proof. Substituting eq. (2.9a) into eq. (2.3) gives

∂tpt = Lρ(f −KA(V −1pt)), p0 = 0. (2.12)

Replacing pt with Lρrt gives us

Lρ∂trt = Lρ(f −KA(V −1Lρrt)), r0 = 0. (2.13)

Since Lρ is a bounded linear operator and thus continuous, r must satisfy

∂trt = f −KA(V −1Lρrt), r0 = 0, (2.14)

or equivalently
∂trt + KA(V −1Lρrt) − f = 0, r0 = 0. (2.15)

Substituting eq. (2.9c) into eq. (2.15) gives eq. (2.11). Q.E.D.

To show that there is a solution to eq. (2.3), we use the listed properties of the solution from proposi-
tion 2.2.

Proposition 2.3. Equation (2.3) has a solution for every µ0 and p0 satisfying µ0 = A(V −1Lρr0) and
p0 = Lρr0 for some r0 ∈ dom(B). In particular, eq. (2.3) has a solution for µ0 = 0 and p0 = 0.
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

Proof. Let r be the solution from proposition 2.2 with initial condition r0 ∈ dom(B). Since

J∗ = χ{‖V −1·‖∞≤1} (2.16)

we have that

B◦(rt) = arg min
x∈B(rt)

‖x‖L2(ρ) = K

(

arg min
µ∈∂J∗(Lρrt)

‖Kµ− f‖L2(ρ)

)

− f = KA(V −1Lρrt) − f = B̃(rt). (2.17)

So in fact, r also solves eq. (2.8) with B̃, which has the same solution as eq. (2.3) by lemma 2.0.3 . What
remains is to map the solution r to µ and p using µt := A(V −1Lρrt) and pt := Lρrt. Q.E.D.

Remark. Note that this µt is not unique in general. Since the difference between non-uniqueness is from
the null space of K, this does not impact any of the later statements.

2.3 Regularity

The regularity that proposition 2.2 puts on the solution r carries over to µ and p.

Proposition 2.4. µ ∈ L∞([0,∞),M(Ω)) and p ∈ W1,∞([0,∞), C(Ω)).

Proof. Recall from proposition 2.3 that ‖∂tr‖L∞([0,∞),L2(ρ)) ≤ ‖f‖L2(ρ). This implies that

‖rt‖L2(ρ) ≤

∫ t

0

‖∂srs‖L2(ρ)ds ≤ t‖f‖L2(ρ). (2.18)

We will use this in the norm bounds for both µ and p.

For the regularity of p, observe that

‖Lρ‖L2(ρ)→C(Ω) = ‖K‖M(Ω)→L2(ρ) < ∞ (2.19)

by lemma 2.0.1 and proposition 1.2. Since ∂tpt = Lρ∂trt, pt = Lρrt and rt ∈ L2(ρ), we have

‖pt‖C(Ω) = ‖Lρrt‖C(Ω) ≤ ‖Lρ‖L2(ρ)→C(Ω)‖rt‖L2(ρ) ≤ t‖Lρ‖L2(ρ)→C(Ω)‖f‖L2(ρ), (2.20)

‖∂tpt‖C(Ω) = ‖Lρ∂trt‖C(Ω) ≤ ‖Lρ‖L2(ρ)→C(Ω)‖∂trt‖L2(ρ) ≤ ‖Lρ‖L2(ρ)→C(Ω)‖f‖L2(ρ). (2.21)

by eq. (2.18), (3) of proposition 2.3 and eq. (2.19). Hence, p ∈ W∞,1([0, T ), C(Ω)) with

‖p‖W1,∞([0,T ),C(Ω)) ≤ max(1, t)‖Lρ‖L2(ρ)→C(Ω)‖f‖L2(ρ). (2.22)

For the regularity of µ, observe that

‖µt‖M(Ω) ≤ J(µt)

= 〈pt|µt〉M(Ω) Fenchel duality

= 〈rt|Kµt〉L2(ρ)

= ‖rt‖L2(ρ)‖Kµt‖L2(ρ) Cauchy-Schwartz

= ‖rt‖L2(ρ)‖Kµt − f + f‖L2(ρ)

≤ ‖rt‖L2(ρ)

(

‖Kµt − f‖L2(ρ) + ‖f‖L2(ρ)

)

triangle ineq.

≤ 2‖rt‖L2(ρ)‖f‖L2(ρ)

≤ 2t‖f‖2L2(ρ). eq. (2.18)

Hence, µ ∈ L∞([0, T ),M(Ω)) with

‖µ‖L∞([0,T ),M(Ω)) ≤ 2T ‖f‖2L2(ρ). (2.23)

Since the solution r is unique and the shown regularity holds for all T > 0, we can extend the regularity
to the interval [0,∞). Q.E.D.
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

2.4 Optimality conditions

We have now proven the existence and regularity of the solutions to eq. (2.3). In this section, we will have
a look at some of the conditions that must hold for the optimal solution. In particular, the orthogonality
condition and the source condition.

We first consider the orthogonality condition. This is a necessary condition, not a sufficient condition.

Proposition 2.5 (Orthogonality condition).

Lρ(f −Kµ†) = 0. (2.24)

Proof. For µ† to be a minimizer of Rf , it must hold that

∂µRf (µ†) = 0. (2.25)

Recall from proposition 2.1 that
∂µRf (µ) = Lρ(f −Kµ). (2.26)

Substituting eq. (2.26) into eq. (2.25) finishes the proof. Q.E.D.

The second condition we consider is the source condition. This is akin to the existence of a Lagrange
multiplier [Burger and Osher, 2004].

Proposition 2.6 (Source condition). The source condition is satisfied by µ† if there exists a φ ∈ L2(X , ρ)
such that

Lφ(a, b) = V (a, b) sgn{µ†} µ†a.e. (2.27)

and
|Lφ(a, b)| ≤ V (a, b) (2.28)

for all (a, b) ∈ Ω.

Proof. We repeat the steps of Bredies in [Bredies & Pikkarainen, 2013, around (4.1)], which in turn in
based on [Burger & Osher, 2004, below def. 1]. The source condition is satisfied by µ† if there exists a
φ ∈ L2(X , ρ) such that

K⋆φ ∈ ∂

∫

Ω

V (a, b)d|·|(µ†). (2.29)

From the definition of the subdifferential it follows that eq. (2.29) can only be satisfied when

〈K⋆φ|ν〉M(Ω) −

∫

Ω

V (a, b)d|ν| ≤
〈

K⋆φ
∣

∣µ†〉
M(Ω)

−

∫

Ω

V (a, b)d
∣

∣µ†∣
∣ (2.30)

for all ν ∈ M(Ω). Since
〈K⋆φ|ν〉M(Ω) = 〈φ|Kν〉L2(ρ) = 〈Lρφ|ν〉M(Ω) (2.31)

by the definition of the adjoint and lemma 2.0.1, eq. (2.30) is equivalent to

〈Lρφ|ν〉M(Ω) −

∫

Ω

V (a, b)d|ν| ≤
〈

Lρφ
∣

∣µ†〉
M(Ω)

−

∫

Ω

V (a, b)d
∣

∣µ†∣
∣ (2.32)

Equation (2.32) must also hold when we take the supremum of the left-hand side.

sup
ν∈M(Ω)

〈Lρφ|ν〉M(Ω) −

∫

Ω

V (a, b)d|ν| ≤
〈

Lρφ
∣

∣µ†〉
M(Ω)

−

∫

Ω

V (a, b)d
∣

∣µ†∣
∣ (2.33)

Every measure ν ∈ M(Ω) has a polar decomposition such that

dν(a, b) = sgn{ν}(a, b)d|ν|(a, b). (2.34)

This allows us to write eq. (2.33) as

sup
ν∈M(Ω)

〈Lρφ− sgn{ν}V |ν〉M(Ω) ≤
〈

Lρφ sgn{µ†} − V
∣

∣

∣

∣µ†∣
∣

〉

M(Ω)
(2.35)
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3 IDEALIZED SETTING

The right-hand side is bounded, so must the left-hand side. If Lρφ(a, b) > V (a, b) for some (a, b) ∈ Ω,
then the left-hand side can be made arbitrarily large by concentrating a large positive ν around that value.
Similarly, if Lρφ(a, b) < −V (a, b) for some (a, b) ∈ Ω, then the left-hand side can be made arbitrarily
large by concentrating a large negative ν around that value. Hence, Lρφ must satisfy

|Lρφ(a, b)| ≤ V (a, b). (2.36)

Inserting this bound into eq. (2.35) gives

0 = sup
ν∈M(Ω)

〈Lρφ− sgn{ν}V |ν〉M(Ω) ≤
〈

Lρφ sgn{µ†} − V
∣

∣

∣

∣µ†∣
∣

〉

M(Ω)
≤ 0. (2.37)

Hence,
Lρφ = V sgn{µ†}, µ† a.e.. (2.38)

Q.E.D.

Note that the source condition described in proposition 2.6 implies that µt must vanish on the set

Ω0
t =

{

(a, b) ∈ Ω

∣

∣

∣

∣

− V (a, b) < pt(a, b) < V (a, b)

}

. (2.39)

3 Idealized setting

In this section, we prove that both the L2 loss Rf (µt) and the Bregman distance Dpt

J (µ†, µt) decrease
monotonically to the optimum value in an ideal setting. The rate at which both of them decrease is of
order O(1/t). This rate is independent of the input dimension d.

Theorem 3.1 (Ideal case). Rf (µt) is decreasing in time with bound

Rf (µt) ≤ Rf (µ†) +
J(µ†)

t
t > 0 a.e. (3.1)

and
∂tD

pt

J (µ†, µt) ≤ 0 t ≥ 0 a.e. (3.2)

with equality only when µt minimizes Rf . Moreover, if φ ∈ L2(X , ρ) is the function such that the source
condition of µ† is satisfied, then

Dpt

J (µ†, µt) ≤
‖φ‖2L2(ρ)

2t
(3.3)

for almost every t ≥ 0.

First, we will show the rate of change of the L2 loss Rf (µt) and the Bregman distance Dpt

J (µ†, µt) under
ideal conditions.

Lemma 3.1.1. Rf (µt) is decreasing in time.

Proof. This follows directly from proposition 2.2 point 5. Q.E.D.

Lemma 3.1.2.

∂tD
pt

J (µ†, µt) ≤ Rf (µ†) −Rf (µt) ≤ 0 (3.4)

holds for almost every t ≥ 0.

Proof. This follows from

∂tD
pt

J (µ†, µt) = ∂t

(

J(µ†) − J(µt) −
〈

pt
∣

∣µ† − µt

〉

M(Ω)

)

=
〈

∂tpt
∣

∣µt − µ†〉
M(Ω)

− ∂tJ(µt) + 〈pt|∂tµt〉M(Ω)

=
〈

∂tpt
∣

∣µt − µ†〉
M(Ω)

pt ∈ ∂J(µt)

≤ Rf (µ†) −Rf (µt) −∂tpt ∈ ∂Rf (µt)

≤ 0. µ† minimizer

Q.E.D.
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3 IDEALIZED SETTING

Proposition 3.1. For all t ≥ 0, it holds that

∂tD
qt
J (µ†, µt) < 0 (3.5)

when
‖f −Kµt‖L2(ρ) >

∥

∥f −Kµ†∥
∥

L2(ρ)
(3.6)

as well as when
∥

∥Kµ† −Kµt

∥

∥

L2(ρ)
> 0. (3.7)

Proof. Equation (3.6) holds if and only if

Rf (µ†) < Rf (µt). (3.8)

Recall from the proof of lemma 3.1.2 that

∂tD
pt

J (µ†, µt) ≤ Rf (µ†) −Rf (µt). (3.9)

The combination of eq. (3.8) and eq. (3.9) proves the first statement. For the second statement recall
from the proof of lemma 3.1.2 that

∂tD
pt

J (µ†, µt) =
〈

∂tpt
∣

∣µt − µ†〉
M(Ω)

. (3.10)

Hence,

∂tD
pt

J (µ†, µt) =
〈

∂tpt
∣

∣µt − µ†〉
M(Ω)

eq. (3.10)

=
〈

Lρ(f −Kµt)
∣

∣µt − µ†〉
M(Ω)

eq. (2.3)

=
〈

Lρ(f −Kµt) − Lρ(f −Kµ†)
∣

∣µt − µ†〉
M(Ω)

proposition 2.5

=
〈

Lρ(Kµ† −Kµt)
∣

∣µt − µ†〉
M(Ω)

=
〈

Kµ† −Kµt

∣

∣Kµt −Kµ†〉
L2(ρ)

lemma 2.0.1

= −
∥

∥Kµ† −Kµt

∥

∥

2

L2(ρ)
.

Clearly, this is strictly negative when eq. (3.7) is satisfied. Q.E.D.

Lemma 3.1.2 and lemma 3.1.1 show that under ideal conditions the Bregman distance and the population
loss respectively are decreasing, and proposition 3.1 shows that this decrease is strict. We will now use
these to show that the Bregman distance and the population loss converge and give a rate at which they
do that.

Proposition 3.2. If µ† satisfies the source condition through φ ∈ L2(ρ), then

Dpt

J (µ†, µt) ≤
‖φ‖2L2(ρ)

2t
(3.11)

for almost every t > 0.

Proof. Define
∂tet = Kµ† −Kµt, e0 = 0 (3.12)

and
p† = Lρφ. (3.13)

Observe that
∂tpt = Lρ∂tet, p0 = 0 = Lρe0. (3.14)

With this we obtain

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

= 〈∂tet|et − φ〉L2(ρ)

=
〈

Kµ† −Kµt

∣

∣et − φ
〉

L2(ρ)
eq. (3.12)
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3 IDEALIZED SETTING

=
〈

Lρ(et − φ)
∣

∣µ† − µt

〉

M(Ω)
lemma 2.0.1

=
〈

pt − p†
∣

∣µ† − µt

〉

M(Ω)
eq. (3.14), eq. (3.13)

= −

(

Dpt(µ†, µt) + Dp†

(µt, µ
†)

)

Hence,

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

+ Dpt(µ†, µt) ≤ 0

Integrating from 0 to t gives
∫ t

0

Dps(µ†, µs)ds +
1

2
‖et − φ‖2L2(ρ) −

1

2
‖e0 − φ‖2L2(ρ) ≤ 0. (3.15)

Therefore

Dpt(µ†, µt) =
1

t

∫ t

0

Dpt(µ†, µt)ds

=
1

t

∫ t

0

Dps(µ†, µs)ds +
1

t

∫ t

0

∫ t

s

∂τD
pτ (µ†, µτ )dτds Fund. th. of calc.

≤
1

t

∫ t

0

Dps(µ†, µs)ds lemma 3.1.2

≤ −
1

2t
‖et − φ‖2L2(ρ) +

1

2t
‖e0 − φ‖2L2(ρ) eq. (3.15)

≤
1

2t
‖e0 − φ‖2L2(ρ)

=
1

2t
‖φ‖2L2(ρ). eq. (3.14)

Q.E.D.

Proposition 3.3. We have

Rf (µt) ≤ Rf (µ†) +
J(µ†)

t
(3.16)

for almost every t > 0.

Proof. Observe that

Dpt

J (µ†, µt) − (t− s)

(

Rf (µ†) −Rf (µt)

)

= Dpt

J (µ†, µt) −

∫ t

s

(

Rf (µ†) −Rf (µt)

)

dτ

≤ Dpt

J (µ†, µt) −

∫ t

s

(

Rf (µ†) −Rf (µτ )

)

dτ lemma 3.1.1

≤ Dpt

J (µ†, µt) −

∫ t

s

∂τD
pτ

J (µ†, µτ )dτ lemma 3.1.2

= Dps

J (µ†, µs). Fund. th. of calc.

Hence, we obtain after rewriting

Rf (µt) ≤ Rf (µ†) +
Dps

J (µ†, µs) −Dpt

J (µ†, µt)

t− s

≤ Rf (µ†) +
Dps

J (µ†, µs)

t− s
Dpt

J (µ†, µt) ≥ 0

≤ Rf (µ†) +
Dps

J (µ†, µs)

t
0 ≤ s < t

≤ Rf (µ†) +
Dp0

J (µ†, µ0)

t
lemma 3.1.2

= Rf (µ†) +
J(µ†)

t
.

Q.E.D.
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4 MEASUREMENT NOISE

4 Measurement noise

In this section we prove that with noise on the measurements, the method will converge with O(1/t) to
the solution that best fits the noisy data. If the noise is small enough, then it will at first get closer to the
noiseless data, too. After some time, the method will start to get close to the solution for the noisy data
and will start moving away from the solution for the noiseless data. The point at which this transition
is of the order of the noise, and suggest that the method should be stopped early in the presence of
measurement noise.

In the remainder of the work, we consider f δ to be some perturbation of f such that

∥

∥f δ − f
∥

∥

2

L2(ρ)
≤ δ (4.1)

with δ > 0. When using f δ instead of f , the flow in eq. (2.3) changes. For this section, we will keep
referring to the solution based on f with µ and p whilst we will refer to the solution based on f δ with ν
and q.

Theorem 4.1 (Measurement noise). We have

∂tD
pt(µ†, νt) ≤

δ2

4
, t ≥ 0 a.e. (4.2)

and
∂tD

qt
J (µ†, νt) < 0 t ≥ 0 a.e. (4.3)

when
‖f −Kνt‖L2(ρ) > δ +

∥

∥f −Kµ†∥
∥

L2(ρ)
(4.4)

as well as when
∥

∥Kµ† −Kνt
∥

∥

L2(ρ)
> δ. (4.5)

Moreover, if µ† satisfies the source condition through φ ∈ L2(X , ρ), then

Dqt
J (µ†, νt) ≤

1

2t
(‖φ‖L2(ρ) + δt)2 +

δ2t

8
(4.6)

for almost every t > 0.

To prove this, observe that the flow for f δ has the same properties as the flow for f .

Lemma 4.1.1. Rfδ (νt) is decreasing in t.

Proof. Swapping the role of f and f δ, i.e. considering f to be a perturbation of f δ, implies that Rfδ (νt)
should behave the same as Rf (µt) from lemma 3.1.1. Thus, Rfδ (νt) is decreasing in t. Q.E.D.

Lemma 4.1.1 shows that the inverse scale space converges with f δ, but it does not tell us how close it
will get to the best solution for f .

Lemma 4.1.2.

∂tD
pt(µ†, νt) ≤

δ2

4
(4.7)

holds for all t ≥ 0.

Proof. Recall from the proof of lemma 3.1.2 that

∂tD
qt
J (µ†, νt) =

〈

∂tqt
∣

∣νt − µ†〉
M(Ω)

. (4.8)

Hence,

∂tD
qt
J (µ†, νt) =

〈

∂tqt
∣

∣νt − µ†〉
M(Ω)

eq. (4.8)

=
〈

L(f δ −Kνt)
∣

∣νt − µ†〉
M(Ω)

eq. (2.3a)

=
〈

L(f δ −Kνt) − Lρ(f −Kµ†)
∣

∣νt − µ†〉
M(Ω)

proposition 2.5
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4 MEASUREMENT NOISE

=
〈

f δ − f + Kµ† −Kνt
∣

∣Kνt −Kµ†〉
L2(ρ)

lemma 2.0.1

=
〈

f δ − f
∣

∣Kνt −Kµ†〉
L2(ρ)

−
〈

Kνt −Kµ†∣
∣Kνt −Kµ†〉

L2(ρ)

≤
∥

∥f δ − f
∥

∥

L2(ρ)

∥

∥Kνt −Kµ†∥
∥

L2(ρ)
−
∥

∥Kνt −Kµ†∥
∥

2

L2(ρ)
Cauchy Schwartz

≤
1

4

∥

∥f δ − f
∥

∥

2

L2(ρ)
Young’s product ineq.

≤
δ2

4
.

Q.E.D.

Proposition 4.1. We have
∂tD

qt
J (µ†, νt) < 0 (4.9)

for all t ≥ 0, when
∥

∥f δ −Kνt
∥

∥

L2(ρ)
> δ +

∥

∥f −Kµ†∥
∥

L2(ρ)
(4.10)

as well as when
∥

∥Kµ† −Kνt
∥

∥

L2(ρ)
> δ. (4.11)

Proof. For the first statement observe that

∂tD
qt
J (µ†, νt) =

〈

∂tqt
∣

∣νt − µ†〉
M(Ω)

eq. (3.10)

=
〈

L(f δ −Kνt)
∣

∣νt − µ†〉
M(Ω)

eq. (2.3a)

=
〈

f δ −Kνt
∣

∣Kνt −Kµ†〉
L2(ρ)

lemma 2.0.1

=
〈

f δ −Kνt
∣

∣Kνt − f δ + f δ − f + f −Kµ†〉
L2(ρ)

= −
∥

∥f δ −Kνt
∥

∥

2

L2(ρ)
+
〈

f δ −Kνt
∣

∣f δ − f + f −Kµ†〉
L2(ρ)

≤ −
∥

∥f δ −Kνt
∥

∥

2

L2(ρ)
+
∥

∥f δ − f + f −Kµ†∥
∥

L2(ρ)

∥

∥Kνt −Kµ†∥
∥

L2(ρ)
Cauchy Schwartz

≤ −
∥

∥f δ −Kνt
∥

∥

2

L2(ρ)
+
(

δ +
∥

∥f −Kµ†∥
∥

L2(ρ)

)

∥

∥f δ −Kνt
∥

∥

L2(ρ)
. triangle ineq., eq. (4.1)

Clearly, this is strictly negative when eq. (4.10) is satisfied.

For the second statement recall from the proof of lemma 4.1.2 that

∂tD
qt
J (µ†, νt) ≤

∥

∥f δ − f
∥

∥

L2(ρ)

∥

∥Kνt −Kµ†∥
∥

L2(ρ)
−
∥

∥Kνt −Kµ†∥
∥

2

L2(ρ)

Clearly, this is strictly negative when eq. (4.11) is satisfied. Q.E.D.

From proposition 4.1 and lemma 4.1.2 it follows that the Bregman distance Dqt
J (µ†, νt) is guaranteed to

converge until Rfδ (νt) is close to Rf (µ†). We know from lemma 4.1.1 that Rfδ (νt) will go to a minimum
of Rfδ . So we expect the Bregman distance Dqt

J (µ†, νt), unlike the Bregman distance Dqt
J (µ†, µt), to not

go to zero. The following proposition exemplifies this.

Proposition 4.2. If µ† satisfies the source condition through φ ∈ L2(ρ), then

Dpt

J (µ†, νt) ≤
1

2t

(

‖φ‖L2(ρ) + δt

)2

+
δ2t

8
(4.12)

for almost every t ≥ 0.

Proof. Define
∂tet = f δ −Kνt + Kµ† − f, e0 = 0. (4.13)

Observe that
∂tqt = Lρ∂tet, q0 = 0 = Lρe0. (4.14)
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Using this definition of et we obtain

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

= 〈∂tet|et − φ〉L2(ρ)

=
〈

f δ −Kνt + Kµ† − f
∣

∣et − φ
〉

L2(ρ)
eq. (4.13)

=
〈

f δ − f
∣

∣et − φ
〉

L2(ρ)
+
〈

Kµ† −Kνt
∣

∣et − φ
〉

L2(ρ)

≤
∥

∥f δ − f
∥

∥

L2(ρ)
‖et − φ‖L2(ρ) +

〈

Kµ† −Kνt
∣

∣et − φ
〉

L2(ρ)
Cauchy-Schwartz

≤ δ‖et − φ‖L2(ρ) +
〈

Kµ† −Kνt
∣

∣et − φ
〉

L2(ρ)
eq. (4.1)

= δ‖et − φ‖L2(ρ) +
〈

Lρ(et − φ)
∣

∣µ† − νt
〉

M(Ω)
lemma 2.0.1

= δ‖et − φ‖L2(ρ) +
〈

qt − p†
∣

∣µ† − νt
〉

M(Ω)
eq. (4.14), p† := Lρ(φ)

= δ‖et − φ‖L2(ρ) −
〈

qt − p†
∣

∣ν† − µt

〉

M(Ω)

Since
0 ≤ Dpt

J (µ†, νt) + Dp†

J (νt, µ
†) =

〈

qt − p†
∣

∣νt − µ†〉
M(Ω)

, (4.15)

where the inequality stems from that qt and p† are from the subgradients ∂J(νt) and ∂J(µ†) respectively,
we obtain

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

≤ δ‖et − φ‖L2(ρ). (4.16)

Solving this for ‖et − φ‖L2(ρ) gives

‖et − φ‖L2(ρ) ≤ ‖e0 − φ‖L2(ρ) + δt = ‖φ‖L2(ρ) + δt. (4.17)

Hence,

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

+ Dpt

J (µ†, νt) ≤ δ‖et − φ‖L2(ρ) −Dp†

J (νt, µ
†)

≤ δ‖φ‖L2(ρ) + δ2t.

By integrating both sides of the equation, we obtain
∫ t

0

Dps

J (µ†, νs)ds +
1

2
‖et − φ‖2L2(ρ) ≤

1

2
‖φ‖2L2(ρ) + δ‖φ‖L2(ρ)t +

1

2
δ2t2

=
1

2

(

‖φ‖2L2(ρ) + δt
)2

.

(4.18)

Therefore,

Dpt

J (µ†, µt) =
1

t

∫ t

0

Dpt

J (µ†, µt)ds

=
1

t

∫ t

0

Dst
J (µ†, µs) +

∫ t

s

∂τD
pτ

J (µ†, µτ )dτds Fund. th. of calc.

≤
1

t

∫ t

0

Dst
J (µ†, µs) +

δ2

4

∫ t

s

dτds lemma 4.1.2

=
1

t

∫ t

0

Dst
J (µ†, νs) +

δ2

4
(t− s)ds

=
1

t

∫ t

0

Dst
J (µ†, νs)ds +

δ2

8
t

≤
1

t

(

1

2

(

‖φ‖2L2(ρ) + δt
)2

− ‖et − φ‖2L2(ρ)

)

+
δ2

8
t eq. (4.18)

≤
1

2t
(‖φ‖L2(ρ) + δt)2 +

δ2

8
t.

Q.E.D.

Proposition 4.2 shows us that we should not continue to t → ∞, but should stop earlier. In particular,
the bound for eq. (4.12) is lowest for t(δ) = O(δ−1).
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5 BIASED SAMPLING

5 Biased sampling

In this section, we prove that a bias in the sampling gives a similar behaviour as noisy measurements.
However, the terms and bounds differ depending on how the biased sampling is expressed. We consider
sampling expressed in terms of a condition on either the Radon-Nikodym derivative or the Wasserstein-1
distance.

For the remainder of this work, we consider ρε ∈ P2(X ) to be some perturbation of the true distribution
ρ ∈ P2(X ), also with bounded second moment. We assume that f ∈ L2(ρ)∩L2(ρε). For this section, we
will keep referring to the solution based on ρ with µ and p whilst we will refer to the solution based on
ρǫ with ν and q. We will also assume that every ν† we refer to has J(ν†) finite.

Theorem 5.1 (Biased sampling of ρ – Radon Nikodym). If ρε ≪ ρ and

∥

∥

∥

∥

1 −
dρε

dρ

∥

∥

∥

∥

L∞(ρ)

≤ ε, (5.1)

then
∂tD

pt(µ†, νt) < 0 (5.2)

when
‖f −Kνt‖L2(ρε) > (1 + ε)

∥

∥f −Kµ†∥
∥

L2(ρ)
. (5.3)

Moreover, if µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively, then

Dpt

J (µ†, µt) ≤
1

2t
‖φ‖2L2(ρ) +

ε

1 + ε

1

2t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L2(ρε)dsdτ

+ (2ε + 1)
t

4

∥

∥f −Kµ†∥
∥

2

L2(ρ)
+

t

4

∥

∥f −Kν†
∥

∥

2

L2(ρε)

(5.4)

for almost every t ≥ 0.

Theorem 5.2 (Biased sampling of ρ – Wasserstein). If f ∈ C0,1(supp(ρ− ρε)) and

W1(ρ, ρε) ≤ ε, (5.5)

then
∂tD

pt(µ†, νt) < 0 (5.6)

when
‖f −Kνt‖

2
L2(ρε) > 2ε

∥

∥f −Kµ†∥
∥

2

C(0,1)(supp(ρ−ρε))
+
∥

∥f −Kµ†∥
∥

2

L2(ρ)
. (5.7)

Moreover, if µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively, then

Dpt

J (µ†, νt) ≤
1

2t
‖φ‖2L2(ρ) + ε

t

2

∥

∥f −Kµ†∥
∥

2

C0,1(supp(ρ−ρε))

+
ε

t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
C0,1(supp(ρ−ρε))dsdτ +

t

4

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

(5.8)

for almost every t ≥ 0.

Theorem 5.1 refers to the Radon-Nikodym derivative condition, whereas theorem 5.2 refers to the
Wasserstein-1 distance condition. To prove these theorems, we first consider a general disturbance with
no particular conditions on the perturbation ρε. Afterwards, we refine the statements from the general
disturbance under the two mentioned conditions in sections 5.1 and 5.2.

Lemma 5.2.1. We have

∂tD
qt
J (µ†, νt) ≤

1

4

∥

∥f −Kµ†∥
∥

2

L2(ρε)
(5.9)

as well as

∂tD
qt
J (µ†, νt) ≤

1

4

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)
(5.10)

for almost every t ≥ 0.
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5 BIASED SAMPLING

Proof. The first statement follows from

∂tD
qt
J (µ†, νt) =

〈

∂tqt
∣

∣νt − µ†〉
M(Ω)

eq. (3.10)

=
〈

Lρε(f −Kνt)
∣

∣νt − µ†〉
M(Ω)

eq. (2.3)

=
〈

f −Kνt
∣

∣K(νt − µ†)
〉

L2(ρε)
lemma 2.0.1

=
〈

f −Kνt
∣

∣Kνt − f + f −Kµ†〉
L2(ρε)

= −‖f −Kνt‖
2
L2(ρε) +

〈

f −Kµ†∣
∣f −Kνt

〉

L2(ρε)

≤ −‖f −Kνt‖
2
L2(ρε) +

∥

∥f −Kµ†∥
∥

L2(ρε)
‖f −Kνt‖L2(ρε) Cauchy Schwartz

≤
1

4

∥

∥f −Kµ†∥
∥

2

L2(ρε)
. Young’s product ineq.

The second statement follows from

∂tD
qt
J (µ†, νt) =

〈

∂tqt
∣

∣νt − µ†〉
M(Ω)

eq. (3.10)

=
〈

Lρε(f −Kνt)
∣

∣νt − µ†〉
M(Ω)

eq. (2.3)

=
〈

−Lρε(f −Kν†) + Lρε(f −Kνt)
∣

∣νt − µ†〉
M(Ω)

proposition 2.5

=
〈

Lρε(Kν† −Kνt)
∣

∣νt − µ†〉
M(Ω)

=
〈

Kν† −Kνt
∣

∣K(νt − µ†)
〉

L2(ρε)
lemma 2.0.1

=
〈

Kν† −Kνt
∣

∣Kνt −Kν† + Kν† −Kµ†〉
L2(ρε)

= −
∥

∥Kν† −Kνt
∥

∥

2

L2(ρε)
+
〈

Kν† −Kµ†∣
∣Kν† −Kνt

〉

L2(ρε)

≤ −
∥

∥Kν† −Kνt
∥

∥

2

L2(ρε)
+
∥

∥Kν† −Kµ†∥
∥

L2(ρε)

∥

∥Kν† −Kνt
∥

∥

L2(ρε)
Cauchy Schwartz

≤
1

4

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)
. Young’s product ineq.

Q.E.D.

Proposition 5.1. We have
∂tD

qt
J (µ†, νt) < 0 (5.11)

when
‖f −Kνt‖L2(ρε) >

∥

∥f −Kµ†∥
∥

L2(ρε)
. (5.12)

Proof. Recall from the proof of lemma 5.2.1 that

∂tD
qt
J (µ†, νt) ≤ −‖f −Kνt‖

2
L2(ρε) +

∥

∥f −Kµ†∥
∥

L2(ρε)
‖f −Kνt‖L2(ρε). (5.13)

Clearly, this is strictly negative when eq. (5.12) is satisfied. Q.E.D.

Lemma 5.2.1 and proposition 5.1 tell us, just like lemma 4.1.1 for the noisy case, and as intuitively
expected, that the flow will converge until the solution matches the residual. This, however, does not
tell us how well it approximates the residual on ρ. We will refine this when we consider the more specific
disturbances.

We will now provide an upper bound for the Bregman distance.

Proposition 5.2. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively,
then

Dpt

J (µ†, νt) ≤
1

2t
‖φ‖2L2(ρ) +

1

2t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L2(ρε−ρ)dsdτ

+
t

4

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
+

t

8

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

(5.14)

for almost every t ≥ 0.
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5 BIASED SAMPLING

Proof. Define
∂tet = Kµ† −Kνt, e0 = 0. (5.15)

and
p† = Lρφ. (5.16)

With this we obtain

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

= 〈∂tet|et − φ〉L2(ρ)

=
〈

Kµ† −Kνt
∣

∣et − φ
〉

L2(ρ)
eq. (5.15)

=
〈

Lρ(et − φ)
∣

∣µ† − νt
〉

M(Ω)
lemma 2.0.1

=
〈

Lρ(et − φ) − qt + qt
∣

∣µ† − νt
〉

M(Ω)

=
〈

qt − Lρφ + Lρet − qt
∣

∣µ† − νt
〉

M(Ω)

=
〈

qt − p†
∣

∣µ† − νt
〉

M(Ω)
+
〈

Lρet − qt
∣

∣µ† − νt
〉

M(Ω)
eq. (5.16)

= −

(

Dqt(µ†, νt) + Dp†

(νt, µ
†)

)

+
〈

Lρet − qt
∣

∣µ† − νt
〉

M(Ω)
. eq. (4.15)

The rightmost term can be bounded by
〈

Lρet − qt
∣

∣µ† − νt
〉

M(Ω)

=

∫ t

0

〈

∂s(Lρes − qs)
∣

∣µ† − νt
〉

M(Ω)
ds Fund. th. of calc.

=

∫ t

0

〈

Lρ(Kµ† −Kνs) − Lρε(f −Kνs)
∣

∣µ† − νt
〉

M(Ω)
ds eq. (5.15)

=

∫ t

0

〈

Lρ(f −Kνs) − Lρε(f −Kνs)
∣

∣µ† − νt
〉

M(Ω)
ds proposition 2.5

=

∫ t

0

〈

Lρ−ρε(f −Kνs)
∣

∣µ† − νt
〉

M(Ω)
ds

=

∫ t

0

〈

f −Kνs
∣

∣Kµ† −Kνt
〉

L2(ρ−ρε)
ds lemma 2.0.1

=

∫ t

0

〈

f −Kνs
∣

∣Kνt −Kµ†〉
L2(ρε−ρ)

ds

=

∫ t

0

〈

f −Kµ† −Kνt + Kµ† + Kνt −Kνs
∣

∣Kνt −Kµ†〉
L2(ρε−ρ)

ds

=

∫ t

0

〈

f −Kµ† + Kνt −Kνs
∣

∣Kνt −Kµ†〉
L2(ρε−ρ)

−
∥

∥Kνt −Kµ†∥
∥

2

L2(ρε−ρ)
ds

=

∫ t

0

∥

∥f −Kµ† + Kνt −Kνs
∥

∥

L2(ρε−ρ)

∥

∥Kνt −Kµ†∥
∥

L2(ρε−ρ)

−
∥

∥Kνt −Kµ†∥
∥

2

L2(ρε−ρ)
ds Cauchy Schwartz

=

∫ t

0

(

∥

∥f −Kµ†∥
∥

L2(ρε−ρ)
+ ‖Kνt −Kνs‖L2(ρε−ρ)

)

∥

∥Kνt −Kµ†∥
∥

L2(ρε−ρ)

−
∥

∥Kνt −Kµ†∥
∥

2

L2(ρε−ρ)
ds Triangle ineq.

≤
1

2

∫ t

0

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
ds +

1

2

∫ t

0

‖Kνt −Kνs‖
2
L2(ρε−ρ)ds Young’s prod. ineq.

=
t

2

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
+

1

2

∫ t

0

‖Kνt −Kνs‖
2
L2(ρε−ρ)ds.

Hence,

∂t

(

1

2
‖et − φ‖2L2(ρ)

)

+ Dpt(µ†, νt) ≤
t

2

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
+

1

2

∫ t

0

‖Kνt −Kνs‖
2
L2(ρε−ρ)ds. (5.17)
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5 BIASED SAMPLING

Integrating from 0 to t gives

∫ t

0

Dps(µ†, νs)ds ≤
1

2
‖φ‖2L2(ρ) +

t2

4

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
+

1

2

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L2(ρε−ρ)dsdτ. (5.18)

Therefore, we obtain

Dpt(µ†, νt) =
1

t

∫ t

0

Dpt(µ†, νt)ds

≤
1

t

∫ t

0

Dps(µ†, νs) +

∫ t

s

∂τD
pτ (µ†, ντ )dτds Fund. th. of calc.

≤
1

t

∫ t

0

Dps(µ†, νs) +
1

4

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

∫ t

s

dτds lemma 5.2.1

=
1

t

∫ t

0

Dps(µ†, νs) +
1

4

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)
(t− s)ds

=
1

t

∫ t

0

Dps(µ†, νs)ds +
t

8

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

≤
1

2t
‖φ‖2L2(ρ) +

1

2t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L2(ρε−ρ)dsdτ eq. (5.18)

+
t

4

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
+

t

8

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)
.

Q.E.D.

The bound of eq. (5.14) in proposition 5.2 is similar to that of eq. (4.12) in proposition 4.2. If νt remains
constant for all t after some time T ≥ 0, then

1

2t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖L2(ρε−ρ)dsdτ = O(1 +
1

t
) (5.19)

for all t ≥ T . This implies that eq. (5.14), just like eq. (4.12), has a term that is inversely in time, a term
constant in time and a term that is linearly increasing in time.

5.1 Radon Nikodym

The first type of disturbances is expressed in terms of a bound on the Radon Nikodym derivative. This
allows for going from the norm using one measure to the norm using the other measure by adding a
multiplicative constant.

For this subsection, we refine our definition of ρε by assuming that ρε is absolutely continuous with
respect to ρ with

∥

∥

∥

∥

1 −
dρε

dρ

∥

∥

∥

∥

L∞(ρ)

≤ ε. (5.20)

Lemma 5.2.2. For all g ∈ L2(ρ)

‖g‖2L2(ρ−ρε) ≤ ε‖g‖2L2(ρ), (5.21)

‖g‖2L2(ρε) ≤ (1 + ε)‖g‖2L2(ρ), (5.22)

and for all g ∈ L2(ρε)

(1 − ε)‖g‖2L2(ρ) ≤ ‖g‖2L2(ρε). (5.23)

Proof. The first statement follows from

‖g‖2L2(ρ−ρε) =

∫

X
g2(x)d(ρ − ρε)(x)

=

∫

X
g2(x)

d(ρ − ρε)

dρ
(x)dρ(x)
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5 BIASED SAMPLING

≤

∥

∥

∥

∥

1 −
dρε

dρ

∥

∥

∥

∥

L∞(ρ)

∫

X
g2(x)dρ(x)

≤ ε‖g‖2L2(ρ).

For the latter two observe that eq. (5.20) means that

1 − ε ≤
dρε

dρ
≤ 1 + ε ρ a.e.. (5.24)

Hence,

‖g‖2L2(ρε) =

∫

X
g2(x)dρε(x) =

∫

X
g2(x)

dρε

dρ
(x)dρ(x) ≤ (1 + ε)‖g‖2L2(ρ)

as well as

‖g‖2L2(ρε) =

∫

X
g2(x)dρε(x) =

∫

X
g2(x)

dρε

dρ
(x)dρ(x) ≥ (1 − ε)‖g‖2L2(ρ).

Q.E.D.

Using the transformation rules of lemma 5.2.2 we can provide conditions on when the rate of change of
the Bregman distance is negative, similar to before.

Lemma 5.2.3. We have
∂tD

qt
J (µ†, νt) < 0 (5.25)

for every t ≥ 0, when
‖f −Kνt‖L2(ρε) > (1 + ε)

∥

∥f −Kµ†∥
∥

L2(ρ)
(5.26)

as well as when

‖f −Kνt‖L2(ρ) >
1 + ε

1 − ε

∥

∥f −Kµ†∥
∥

L2(ρ)
(5.27)

and ε < 1.

Proof. Observe that

∂tD
qt
J (µ†, νt) ≤

∥

∥f −Kµ†∥
∥

L2(ρε)
‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2L2(ρε) eq. (5.13)

≤ (1 + ε)
∥

∥f −Kµ†∥
∥

L2(ρ)
‖Kνt − f‖L2(ρ) − ‖Kνt − f‖2L2(ρε) eq. (5.22)

≤ (1 + ε)
∥

∥f −Kµ†∥
∥

L2(ρ)
‖Kνt − f‖L2(ρ) − (1 − ε)‖Kνt − f‖2L2(ρ). eq. (5.23)

Clearly, ∂tD
qt
J (µ†, νt) is strictly negative when either eq. (5.26) or eq. (5.27) is satisfied. Q.E.D.

When comparing eq. (5.26) with eq. (4.10), we see that the sampling bias adds a multiplicative term
based on ε. This is unlike the noisy case, where we got an additive term. Likewise, the upper bound for
the Bregman distance also gets some multiplicative constants depending on ε.

Proposition 5.3. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively,
then

Dpt

J (µ†, µt) ≤
1

2t
‖φ‖2L2(ρ) +

ε

1 + ε

1

2t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L2(ρε)dsdτ

+ (2ε + 1)
t

4

∥

∥f −Kµ†∥
∥

2

L2(ρ)
+

t

4

∥

∥f −Kν†
∥

∥

2

L2(ρε)

(5.28)

for almost every t ≥ 0.

Proof. From the transformation rules of lemma 5.2.2 it follows that

t

4

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
≤ ε

t

4

∥

∥f −Kµ†∥
∥

2

L2(ρ)
. (5.29)
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as well as
‖Kντ −Kνs‖

2
L2(ρε−ρ) = ‖Kντ −Kνs‖

2
L2(ρε) − ‖Kντ −Kνs‖

2
L2(ρ)

≤ ‖Kντ −Kνs‖
2
L2(ρε) −

1

1 + ε
‖Kντ −Kνs‖

2
L2(ρε)

= (1 −
1

1 + ε
)‖Kντ −Kνs‖

2
L2(ρε)

=
ε

1 + ε
‖Kντ −Kνs‖

2
L2(ρε).

(5.30)

Additionally,

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

=
∥

∥Kν† − f + f −Kµ†∥
∥

2

L2(ρε)

=
∥

∥Kν† − f
∥

∥

2

L2(ρε)
+
∥

∥f −Kµ†∥
∥

2

L2(ρε)
+ 2

〈

Kν† − f
∣

∣f −Kµ†〉
L2(ρε)

=
∥

∥Kν† − f
∥

∥

2

L2(ρε)
+
∥

∥f −Kµ†∥
∥

2

L2(ρε)
+ 2

∥

∥Kν† − f
∥

∥

L2(ρε)

∥

∥f −Kµ†∥
∥

L2(ρε)
Cauchy Schwartz

= 2
∥

∥Kν† − f
∥

∥

2

L2(ρε)
+ 2

∥

∥f −Kµ†∥
∥

2

L2(ρε)
Young’s product ineq.

≤ 2
∥

∥Kν† − f
∥

∥

2

L2(ρε)
+ 2(1 + ε)

∥

∥f −Kµ†∥
∥

2

L2(ρ)
. eq. (5.22)

(5.31)
Bounding eq. (5.14) using eq. (5.30), eq. (5.29) and eq. (5.31) gives the sought for expression. Q.E.D.

Note that when we take the limit of ε → 0 of eq. (5.28), then we get

Dpt

J (µ†, µt) ≤
1

2t
‖φ‖

2
L2(ρ) +

t

2

∥

∥f −Kµ†∥
∥

2

L2(ρ)
. (5.32)

This shows that the bound for the Bregman distance in proposition 5.3, unlike the bound in proposi-
tion 5.2, is no longer tight in ε.

An interesting source of bias is when ρε is a subsampling of ρ such that ‖f‖L2(ρε) is a Monte Carlo

estimator of ‖f‖L2(ρ). Clearly, ρε ≪ ρ and ε is finite. This means that subsampling is a special case of

Radon Nikodym bias and that we can use proposition 5.3. At the same time, the fact that ‖f‖L2(ρε) is

a Monte Carlo estimator allows us to provide an alternative to eq. (5.28).

Proposition 5.4. Let ρ ∈ P4(X ) be a probability measure with bounded 4th moment, ρε be a subsampling
of ρ with m(ε) ∈ N samples, δ > 0, and f ∈ L2(ρ) ∩ L4(ρ). If µ† and ν† satisfy the source condition
through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively, then

Dpt

J (µ†, νt) ≤
1

2t
‖φ‖2L2(ρ) +

1

2t
√

m(ε)δ

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
L4(ρ)dsdτ

+
t

4
√

m(ε)δ

∥

∥f −Kµ†∥
∥

2

L4(ρ)
+

t

8

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)
.

(5.33)

for almost every t ≥ 0 with probability at least 1 − δ.

Proof. Since ρ has bounded 4th moment, we get by proposition 1.2 that Kµ ∈ L4(ρ) for all µ ∈ M(Ω).

From Chebychev’s inequality it follows that

∣

∣

∣
‖Kντ −Kνs‖

2
L2(ρε−ρ)

∣

∣

∣

2

=

∣

∣

∣

∣

∫

X
|Kντ (x) −Kνs(x)|2dρε(x) −

∫

X
|Kντ (x) −Kνs(x)|2dρ(x)

∣

∣

∣

∣

2

(5.34)

≤

∫

X |Kντ (x) −Kνs(x)|4dρ(x) −

(

∫

X |Kντ (x) −Kνs(x)|2dρ(x)

)2

m(ε)δ
(5.35)

=
‖Kντ −Kνs‖

4
L4(ρ) − ‖Kντ −Kνs‖

4
L2(ρ)

m(ε)δ
(5.36)
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≤
‖Kντ −Kνs‖

4
L4(ρ)

m(ε)δ
. (5.37)

with probability at least 1 − δ. Taking the square root on both sides gives

‖Kντ −Kνs‖
2
L2(ρε−ρ) ≤

‖Kντ −Kνs‖
2
L4(ρ)

√

m(ε)δ
. (5.38)

Similarly,

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
≤

∥

∥f −Kµ†∥
∥

2

L4(ρ)
√

m(ε)δ
. (5.39)

Substitution of eq. (5.38) and eq. (5.39) into eq. (5.14) gives eq. (5.33). Q.E.D.

Note that when we take the limit of m(ε) → ∞ of eq. (5.33), then we get

Dpt

J (µ†, µt) ≤
1

2t
‖φ‖2L2(ρ). (5.40)

This shows that the bound for the Bregman distance in proposition 5.4, like the bound in proposition 5.2,
is tight in ε.

5.2 Wasserstein

The second type of disturbances is expressed in terms of a bound on the Wasserstein metric. This allows
for going from the norm using one measure to the norm using the other measure by using the duality
between Wasserstein and the Lipschitz continuous function with Lipschitz constant at most 1.

For this subsection, we refine our definition of ρε by assuming that the Wasserstein-1 distance between
ρε and ρ is bounded through ε, i.e.,

W1(ρε, ρ) ≤ ε. (5.41)

We also assume that f ∈ C0,1(supp(ρ− ρε).

Lemma 5.2.4. For all g ∈ C0,1(supp(ρ− ρε)

‖g‖2L2(ρε−ρ) ≤ 2‖g‖2C0,1(supp(ρε−ρ)ε. (5.42)

Proof. Recall that

W1(ρε, ρ) = sup
h∈C0,1(X )
Lip(h)≤1

〈h|ρε − ρ〉M(X ) .

Since for all g ∈ C0,1(supp(ρε − ρ))

Lip(
g

Lip(g)
) ≤ 1, (5.43)

we obtain

〈g|ρε − ρ〉M(X ) = Lip(g)

〈

g

Lip(g)

∣

∣

∣

∣

ρε − ρ

〉

M(X )

≤ Lip(g)W1(ρ
ε, ρ) ≤ Lip(g)ε, (5.44)

where we used eq. (5.41). Furthermore, Lip(|g|2) ≤ 2‖g‖2C0,1(supp(ρε−ρ)) < ∞ since

∣

∣

∣
|g(x)|2 − |g(y)|2

∣

∣

∣
= |g(x) − g(y)|||g(x)| + |g(y)|| ≤ 2‖g‖C0(supp(ρε−ρ))Lip(g)‖x− y‖ℓ∞ (5.45)

for all x, y ∈ supp(ρε − ρ). Hence,

‖g‖2L2(ρε−ρ) =
〈

|g|2
∣

∣

∣
ρε − ρ

〉

M(X )

≤ Lip(|g|2)ε eq. (5.44)

≤ 2‖g‖2C0,1(X )ε. eq. (5.45)

for all g ∈ C0,1(supp(ρε − ρ)). Q.E.D.
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Proposition 5.5. We have
∂tD

qt(µ†, νt) < 0 (5.46)

when
‖Kνt − f‖2L2(ρε) > 2ε

∥

∥f −Kµ†∥
∥

2

C0,1(supp(ρ−ρε)
+
∥

∥f −Kµ†∥
∥

2

L2(ρ)
. (5.47)

Proof. f − Kµ† is a sum of two Lipschitz functions on supp(ρ − ρε); f by assumption and Kµ† by
proposition 1.1. Thus, f −Kµ† is Lipschitz on supp(ρ− ρε). From lemma 5.2.4 we obtain that

∥

∥f −Kµ†∥
∥

2

L2(ρε)
≤ 2ε

∥

∥f −Kµ†∥
∥

2

C0,1(supp(ρ−ρε)
+
∥

∥f −Kµ†∥
∥

2

L2(ρ)
. (5.48)

Hence,

∂tD
qt
J (µ†, νt) ≤

∥

∥f −Kµ†∥
∥

L2(ρε)
‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2L2(ρε) eq. (5.13)

≤
√

2ε‖f −Kµ†‖
2
C0,1(supp(ρ−ρε) + ‖f −Kµ†‖

2
L2(ρ)‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2L2(ρε). eq. (5.48)

Clearly, this is strictly negative when eq. (5.47) is satisfied. Q.E.D.

When comparing eq. (5.26) with eq. (4.10), we see that the sampling bias adds an additive term based on
ε. This is like the noisy case, but unlike when the sampling bias was given in terms of the Radon–Nikodym
derivative.

Proposition 5.6. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively,
then

Dpt

J (µ†, νt) ≤
1

2t
‖φ‖2L2(ρ) + ε

t

2

∥

∥f −Kµ†∥
∥

2

C0,1(supp(ρ−ρε))

+
ε

t

∫ t

0

∫ τ

0

‖Kντ −Kνs‖
2
C0,1(supp(ρ−ρε))dsdτ +

t

8

∥

∥Kν† −Kµ†∥
∥

2

L2(ρε)

(5.49)

for almost every t ≥ 0.

Proof. Recall from the proof of proposition 5.5 that f −Kµ† ∈ C0,1(supp(ρ− ρε)). Equation (5.48) can
be rewritten as

∥

∥f −Kµ†∥
∥

2

L2(ρε−ρ)
≤ 2ε

∥

∥f −Kµ†∥
∥

2

C0,1(supp(ρ−ρε)
. (5.50)

Similarly, Kντ −Kνs ∈ C0,1(supp(ρ− ρε)) by proposition 1.2. Hence,

‖Kντ −Kνs‖
2
L2(ρε−ρ) ≤ 2ε‖Kντ −Kνs‖

2
C0,1(supp(ρ−ρε). (5.51)

Bounding eq. (5.14) using eq. (5.50) and eq. (5.51) gives the sought for expression. Q.E.D.

Note that when we take the limit of ε → 0 of eq. (5.28), then we get

Dpt

J (µ†, µt) ≤
1

2t
‖φ‖

2
L2(ρ). (5.52)

This shows that the bound for the Bregman distance in proposition 5.6, like the bound in proposition 5.2,
is tight in ε.

6 Parameter space discretisation

One issue with the inverse scale space of eq. (1.2) is that pt is defined on Ω. To ensure that pt ∈ ∂J(µt) we
need to have full knowledge of pt. This cannot be implemented. Hence, Ω needs to be discretized. In this
section, we study a particular discretization based on the Voronoi tessellation. In section 6.1, we show,
for a given sequence of Voronoi tessellations with mild assumptions, that the inverse scale space flow on
these tessellations converges to the full flow for N → ∞. In section 6.2, we show the rate of convergence
for the flow with fixed N to the optimal solution. Combined, these sections prove theorem 6.1.

Page 23 of 30



6 PARAMETER SPACE DISCRETISATION

Given a set ωN ⊆ Ω with
∣

∣ωN
∣

∣ = N , a Voronoi tessellation divides Ω into N subsets

ΩN
n =

{

w ∈ Ω

∣

∣

∣

∣

∀m ∈ {1, . . . , N} : |w − ωN
n | ≤ |w − ωN

m |

}

(6.1)

such that

Ω =

N
⋃

n=1

ΩN
n . (6.2)

We consider sequences of sets {ωN}∞N=1 with ωN ⊆ Ω,
∣

∣ωN
∣

∣ = N and limN→∞ maxn diam(ΩN
n ) = 0.

For this section, we will keep referring to the solution over Ω with µ and p whilst we will refer to the
solution over ωN with ν and q. With ν† we denote a minimizer of Rf with J(ν†) < ∞ over the measures
supported on ωN . We will make use of the Lagrangian

F : M(Ω) → [0,∞), µ 7→ J(µ) + λRf (µ) (6.3)

of eq. (2.3) and its restriction to ωN

FNµ =

{

Fµ supp(µ) ⊆ ωN

∞ otherwise
(6.4)

in the proofs. We will also assume that Ω is compact.

Theorem 6.1. The sequence {FN}∞N=1 satisfies

FN
Γ
−→ F (6.5)

and its sequence of minimizers converges in weak∗ to the minimizer of F . Moreover,

‖Kνt − f‖2L2(ρ) ≤ 2
∥

∥Kµ† − f
∥

∥

2

L2(ρ)
+ 2Lip(σ)2(max

n
diam(ΩN

n ))2
∥

∥µ†∥
∥

2
+ 2

J(ν†)

t
. (6.6)

for almost every t ≥ 0.

6.1 Convergence of the discrete flow to the full flow

Both the discrete flow and full flow are well-defined flows, so what remains to show is that the solutions
to the discrete flow for increasing N converge to the solution for the full flow. To prove this, we will show
that the Lagrangian of the discrete flow FN Γ-converges to the Lagrangian of the full flow F and that the
associated minimizers converge in weak∗. The requirements for this to hold is that FN satisfies the lim inf
property, that there exists a Γ-realizing sequence and that the family (FN )N is equicoercive [Braides,
2006]. These three properties are the requirements for the fundamental theorem of Γ-convergence. The
three propositions at the end of this subsection show that these hold. These propositions rely on some
properties of F that carry over to FN . We will prove those first.

Lemma 6.1.1. F is proper, convex, weak* lower semi-continuous and coercive.

Proof. F is proper, since 0 ∈ dom(F ).

Since V is continuous, J is convex. Since K is a bounded, linear (and thus continuous) operator and the
square of the L2(ρ) norm is convex, Rf is convex. Since F is a sum of two convex functions, F is convex.

Let (µn) be a sequence of measures and µn, µ ∈ M(Ω), such that µn
w⋆

−−→ µ. Then for all φ ∈ L2(ρ)

lim
n→∞

〈Kµn|φ〉L2(ρ) = lim
n→∞

〈Lρφ|µn〉M(Ω) = 〈Lρφ|µ〉M(Ω) = 〈Kµ|φ〉L2(ρ) . (6.7)

This shows that Kµn
L2(ρ)
−−−→ Kµ. Since

w 7→
1

2
‖w − f‖2L2(ρ) (6.8)

is continuous and convex, it is sequentially weak lower-semicontinuous. The combination implies that
Rf is sequentially weak⋆ lower-semicontinuous. Since J is continuous, it is weak⋆ lower-semicontinuous.
This implies that F is weak⋆ lower-semicontinuous.
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F is coercive if and only if
lim

‖µ‖M(Ω)→∞
F (µ) = ∞. (6.9)

For measures µ /∈ N(K) outside the kernel of K we have that Rf (µ) → ∞ as ‖µ‖M(Ω) → ∞. Since
J is non-negative, F will grow without bound for those measures too. What remains is the measures
µ ∈ N(K) inside the kernel of K. For these measures Rf (µ) is constant, but by the conditions on V
imply that J will grow without bound. Hence, F is coercive. Q.E.D.

Now, we can prove the three properties needed for the sequence of FN ’s.

Proposition 6.1 (Liminf property). For all µ ∈ M(Ω) and every sequence (µn) such that µn
w∗

−−→ µ, we
have

lim inf
µn→∞

Fn(µn) ≥ F (µ). (6.10)

Proof. From construction of Fn it follows that

Fn(µ) ≥ F (µ). (6.11)

Hence, combined with the lower semi-continuity of F proven in lemma 6.1.1, we obtain

lim inf
µn→∞

Fn(µn) ≥ lim inf
µn→∞

F (µn) ≥ F (µ). (6.12)

Q.E.D.

Proposition 6.2 (Γ-realizing sequence). Let µ ∈ M(Ω) and define a sequence of measures µN ∈ M(Ω)
by

µN =

N
∑

n=1

µ(ΩN
n )δωN

n
. (6.13)

We have µN
w∗

−−→ µ as well as
lim

N→∞
FN (µN ) = F (µ). (6.14)

Proof. Recall that M(Ω) is dual to C(Ω), so the weak* convergence is defined in terms of g ∈ C(Ω).
Since Ω is compact, g is absolutely continuous. Recall that this implies that

∀ε > 0∃δ > 0∀(a, b), (c, d) ∈ Ω : ‖(a, b) − (c, d)‖ < δ =⇒ |g(a, b) − g(c, d)| < ε. (6.15)

Since the diameter of the Voronoi cells vanishes as N goes to infinity, there must be an Ñ such that for
all N > Ñ and n ∈ {1, . . . , N} we have that

∥

∥(a, b) − (aNn , bNn )
∥

∥ < δ for all (a, b) ∈ ΩN
n . Hence, for all

g ∈ C(Ω) and all ε > 0

lim
N→∞

∣

∣

∣

∣

∫

Ω

g(a, b)d(µ− µN )(a, b)

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω

g(a, b)d

(

µ−
N
∑

n=1

µ(ΩN
n )δωN

n

)

(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω

g(a, b)dµ(a, b) −
N
∑

n=1

g(aNn , bNn )µ(ΩN
n )

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω

g(a, b)dµ(a, b) −
N
∑

n=1

∫

ΩN
n

g(aNn , bNn )dµ(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

N
∑

n=1

∫

ΩN
n

g(a, b)dµ(a, b) −
N
∑

n=1

∫

ΩN
n

g(aNn , bNn )dµ(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

N
∑

n=1

∫

ΩN
n

(

g(a, b) − g(aNn , bNn )

)

dµ(a, b)

∣

∣

∣

∣

∣

≤ lim
N→∞

N
∑

n=1

∫

ΩN
n

∥

∥g(a, b) − g(aNn , bNn )
∥

∥d|µ|(a, b)
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< lim
N→∞

N
∑

n=1

∫

ΩN
n

εd|µ|(a, b)

= ε‖µ‖M(Ω)

Since ε was arbitrary, we must have that

lim
N→∞

∫

Ω

g(a, b)d(µ− µN )(a, b) = 0. (6.16)

This shows that µN
w∗

−−→ µ, and by construction of µN we have FN (µN ) = F (µN ). Furthermore, we
showed in lemma 6.1.1 that F was weak∗ lower semi-continuous. If fact, by similar arguments, it is
sequentially weak∗ continuous. Hence, it follows that

lim
N→∞

FN (µN ) = lim
N→∞

F (µN ) = F (µ). (6.17)

Q.E.D.

Proposition 6.3 (Equicoercivity). The family (FN )N is equicoercive.

Proof. The family (FN )N is equicoercive if and only if every member of the family is coercive. In
lemma 6.1.1 it was proven that F is coercive. Hence, by construction of FN

lim
‖µ‖M(Ω)→∞

FN (µ) ≥ lim
‖µ‖M(Ω)→∞

F (µ) = ∞. (6.18)

This means that FN is coercive. Since N was arbitrary, it holds for all members FN of the family
(FN )N . Q.E.D.

We have now shown that the requirements for the fundamental theorem of Γ-convergence hold, which

implies that FN
Γ
−→ F and that the sequence of minimizers of FN converges in weak∗ to the minimizer of

F .

6.2 Convergence error for the discrete flow

In the previous section, we showed that the discrete flow converges to the full flow. In this section, we
will fix N and show the convergence rates of the discrete flow to the optimal solution. We will first show
the generic bound, also shown in theorem 6.1. Afterward, we will look at a special case.

Observe that the finite ωN satisfies the required properties for a proper inverse scale space flow. The
following proposition shows the generic bound.

Proposition 6.4. We have

‖Kνt − f‖2L2(ρ) ≤ 2
∥

∥Kµ† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t

+ 2
∥

∥µ†∥
∥

2

M(Ω)
(max

n
diam(ΩN

n ))2Lip(σ)2
∫

X
max(1, ‖x‖)2dρ(x).

(6.19)

for almost every t ≥ 0.

Proof. From proposition 3.3 it follows that

‖Kνt − f‖2L2(ρ) ≤
∥

∥Kν† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t
. (6.20)

Since ν† is a minimizer of Rf over ωN , we have for the measure

µN =

N
∑

n=1

µ†(ΩN
n )δωN

n
(6.21)

that
∥

∥Kν† − f
∥

∥

L2(ρ)
≤ ‖KµN − f‖L2(ρ) ≤

∥

∥KµN −Kµ†∥
∥

L2(ρ)
+
∥

∥Kµ† − f
∥

∥

L2(ρ)
(6.22)
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and thus by Young’s inequality for products with p = q = 2

∥

∥Kν† − f
∥

∥

2

L2(ρ)
≤ 2

∥

∥KµN −Kµ†∥
∥

2

L2(ρ)
+ 2

∥

∥Kµ† − f
∥

∥

2

L2(ρ)
. (6.23)

We observe that by a similar argument as in the proof of proposition 6.2 that

∥

∥KµN −Kµ†∥
∥

2

L2(ρ)
=

∫

X

∣

∣

∣

∣

∫

Ω

σ(a⊺x + b)d(µn − µ†)(a, b)

∣

∣

∣

∣

2

dρ(x)

≤

∫

X

( N
∑

n=1

∫

ΩN
n

∥

∥σ(a⊺x + b) − σ((aNn )⊺x + bNn )
∥

∥d
∣

∣µ†∣
∣(a, b)

)2

dρ(x)

≤

∫

X

( N
∑

n=1

∫

ΩN
n

Lip(σ)
∥

∥(a⊺x + b) − ((aNn )⊺x + bNn )
∥

∥d
∣

∣µ†∣
∣(a, b)

)2

dρ(x)

≤

∫

X

( N
∑

n=1

∫

ΩN
n

Lip(σ)

(

∥

∥a− aNn
∥

∥‖x‖ +
∣

∣b− bNn
∣

∣

)

d
∣

∣µ†∣
∣(a, b)

)2

dρ(x)

≤

∫

X
max(1, ‖x‖)2

( N
∑

n=1

∫

ΩN
n

Lip(σ)

(

∥

∥a− aNn
∥

∥ +
∣

∣b− bNn
∣

∣

)

d
∣

∣µ†∣
∣(a, b)

)2

dρ(x)

= Lip(σ)2
∫

X
max(1, ‖x‖)2

( N
∑

n=1

∫

ΩN
n

diam(ΩN
n )d

∣

∣µ†∣
∣(a, b)

)2

dρ(x)

≤
∥

∥µ†∥
∥

2

M(Ω)
(max

n
diam(ΩN

n ))2Lip(σ)2
∫

X
max(1, ‖x‖)2dρ(x).

Substituting this into eq. (6.23) and the resulting expression into eq. (6.20) gives eq. (6.19). Q.E.D.

In Devroye et al., 2015 it was shown that a Voronoi cell’s radius decreases with a rate of O(N−1/d) when
points the points in ωN are i.i.d. sampled from an absolutely continuous probability measure over Ω. We
can use the direct approximation theorem of Barron spaces to achieve a better rate [E & Wojtowytsch,
2020, Theorem 3.8].

Proposition 6.5. Let N ∈ N. Denote with Mf the set of all measures µN of Natoms that satisfy the
bounds

∥

∥KµN −Kµ†∥
∥

2

L2(ρ)
≤

J(µ†)2

N
Lip(σ)2

∫

X
max(1 + ‖x‖)2dρ(x), (6.24)

and choose ωN such that Mf is non-empty. Then,

‖Kνt − f‖2L2(ρ) ≤ 3
∥

∥Kµ† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t

+ 3
J(µ†)2

N
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x) + 3 inf

µN∈Mf

∥

∥Kν† −KµN

∥

∥

2

L2(ρ)
.

(6.25)

Proof. Kµ† ∈ B, so by [E et al., 2021, theorem 4] there exists a suitable choice for ωN . Let µN ∈ Mf .
Observe that

‖Kνt − f‖2L2(ρ) ≤
∥

∥Kν† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t
proposition 3.3

≤ 3
∥

∥Kν† −KµN

∥

∥

2

L2(ρ)
+ 3

∥

∥Kµ† −KµN

∥

∥

2

L2(ρ)
+ 3

∥

∥Kµ† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t
△ ineq., Young’s

≤ 3
∥

∥Kν† −KµN

∥

∥

2

L2(ρ)
+ 3

J(µ†)2

N
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x)

+3
∥

∥Kµ† − f
∥

∥

2

L2(ρ)
+ 2

J(ν†)

t
. eq. (6.24)

Taking the infimum over µN ∈ Mf gives eq. (6.25). Q.E.D.
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7 Discussion

In this work, we have studied the convergence and error analysis of finding the best measure µ such that
the Barron function Kµ is close to f using the inverse scale space flow. After having established the
existence and regularity of the solution, we considered the ideal, noisy, biased, and discretized cases. For
each of these cases, we analysed the evolution of the Bregman divergence with respect to the optimal
solution Dpt(µ†, νt) and the L2 loss Rf (µt).

In the ideal case, we got monotonic and linear evolution to the optimal solution. In the noisy case, we
still got monotonic and linear evolution to the optimal solution but only up to an error level determined
by the noise level δ. These results agree with the known results for inverse scale spaces.

In the novel case of biased sampling, Dpt(µ†, νt) ≤ O(1 + 1
t + t) with the suppressed factors in the big O

notation depending on ε. When we work with noisy measurements, Dpt(µ†, νt) has a similar upper bound
but depending on δ. In that setting, the smallest upper bound for Dpt(µ†, νt) is attained for t(δ) = O(δ−1).

When dealing with biased sampling, this smallest upper bound is attained for t(ε) = O(
√
1+ε√

1+ε+ε2
) and

t(ε) = O(
√
1+ε√
ε

) for a Radon Nikodym and a Wasserstein perturbation respectfully. However, whilst in

many cases it is straightforward to provide an estimate for δ, it is not the case for ε.

A second issue with the upper bounds for Dpt(µ†, νt) is that we typically do not know f , φ, µ†, ν† or
ρ. What we do know is Kνt on supp(ρε). This means the bound in proposition 5.3 has more terms that
can be explicitly computed than the bounds in proposition 5.2, proposition 5.4 or proposition 5.6. That
makes proposition 5.3 arguably the most useful proposition.

When the parameter space Ω is discretized, we have shown that we still have a proper inverse scale space
flow. In this setting, we get an additional additive factor depending on N in convergence. When we
don’t make any additional assumptions on ωN , this additional factor is of the form O(N−1/d). This 1/d
factor shows that the discretization method suffers from the curse of dimensionality, meaning that the
method performs poorly when working with high dimension. Although we show that an O(N−1/2) can
be attained in theory, it is unclear how to find the required N points without solving a different sparse
minimization problem first.
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