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Abstract

This paper presents a method for finding a sparse representation of Barron functions. Specifically,
given an L? function f, the inverse scale space flow is used to find a sparse measure p minimising the
L? loss between the Barron function associated to the measure p and the function f. The convergence
properties of this method are analysed in an ideal setting and in the cases of measurement noise and
sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer
with O(1/t), and in the case of measurement noise or sampling bias the optimum is achieved up to a
multiplicative or additive constant. This convergence is preserved on discretization of the parameter
space, and the minimizers on increasingly fine discretizations converge to the optimum on the full
parameter space.

keywords: Barron Space, Bregman Iterations, Sparse Neural Networks, Inverse Scale Space, Opti-
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1 Introduction

Most neural networks contain a subnetwork with fewer parameters that performs equally well [Ramanujan
et al., M], and some of these subnetworks have been found to generalise equally or even better than
their dense counterparts [Liu et al., m; Liu et al., M] However, it is a priori hard to determine
which parameters of the network will be part of the subnetwork. Hence, various approaches have been
developed for finding well performing sparse neural network. They fall roughly in three categories. The
first is to add a term to the loss or regularizer that promotes sparsity. An example of this would be
LASSO, in which a ¢! regularizer is added [Tibshirani, m The second is to train a network first and
prune it afterwards, meaning weights are reduced with as little as possible influence on the performance
[Molchanov et al., m The third is to start with a sparse architecture, and add or remove neurons
during training [Dai et al., ]

One of the methods, which starts from a sparse architecture, is based on the Bregman iteration [Osher
et al., m This method has been introduced and thoroughly analysed for imaging and compressed
sensing [Burger et al., m; Yin et al., m; Burger et al., @] The method works in these settings by
progressively adding more detail to the reconstructed images and signals, respectively. A limitation of the
original method is that it requires that often requires the problem to be convex. However, adaptations
of the method, e.g., the linearized variant in Benning et al., ; Bungert et al., , where the loss is
replaced by a first order approximation, allows for a successful application to neural networks. A major
success of this method is that it is able to find an auto-encoder without ever explicitly defining an auto-
encoder like architecture [Bungert et al., M] This shows that it has major potential for automatic
neural network architecture design tasks.

1.1 Related work

Bregman iterations were introduced in Osher et al., and further developed and analysed in Yin et al.,
m; Bachmayr and Burger, m; Cai et al., M; Cai et al., m; Yin, m; Burger et al., m;
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Burger et al., [2012; Benning and Burger, 20184 as an algorithm to solve sparsity promoting regularisation
tasks in computer vision. Linearized Bregman iterations as introduced in Cai et al., [2009b; Yin et al.,
2008 can be seen as a generalization of the mirror descent algorithm [Nesterov, [1983; Beck & Teboulle,
2003] to the non-differentiable, convex case. More recently, variants of the original algorithm have been
applied in the context of machine learning, see, e.g., [Bungert et al., [2022; Bungert et al., 2021; Wang &
Benning, 2023a; Wang & Benning, 2023b).

Bregman iterations are the implicit Euler discretization of an inverse scale space flow. Going to the
continuous limit has helped to find easy implementations for relatively complex functionals like the total
variation functional, and has helped to obtain well-justified and simple stopping criteria [Burger et al.,
2006]. In the finite-dimensional case of sparse regularization (and further generalizations) an exact time
discretization can be found, which leads to efficient methods [Burger et al., [2012; Moeller & Burger,
2013]. We refer to Benning and Burger, 20181 for recent overview.

Similar to inverse scale space flow being the continuous limit of the Bregman iterations, we have that the
Barron spaces are the continuous limit of shallow neural network. It was proven that Barron functions
have bounded point evaluations [Bartolucci et al., [2023; Spek et al., [2023], Barron functions can be
approximated in LP with rate O(m~/?) [E. & Wojtowytsch, 2022], Barron spaces have a representer
theorem [Parhi & Nowak, 2021] and that Barron spaces are a kind of integral reproducing kernel Banach
spaces (RKBS), a Banach space analogue to reproducing kernel Hilbert spaces (RKHS) [Bartolucci et
al., 2023]. The spaces are parametrized by the activation function of the networks. The Barron spaces
associated to most of the commonly used non-periodic activation are embedded in the Barron space with
ReLU as activation function [Heeringa et al., [2023]. This Barron space together with the Barron spaces
associated to the RePU, the higher-order generalization of the ReLU, are strongly related to BV spaces
[E. & Wojtowytsch, [2022; Parhi & Nowak, 2021].

A fundamental open question in machine learning is how to find the best function representing your
data. For Barron spaces, this means finding the best measure p representing the Barron function f.
Since the relation between p and f is linear, this leads to a convex minimization problem. Based on
an alternative representation of Barron functions in probability space, the authors in Wojtowytsch, 12020
formulated a Wasserstein gradient flow for this problem based on the ideas of Chizat and Bach, [2018.
Under several assumptions, including omnidirectional initial conditions and satisfying the Morse—Sard
property, this leads to a unique solution 7 [Wojtowytsch, 2020]. However, not all Barron functions
satisfy the Morse—Sard property, placing a limit on the functions that can be represented with this
approach [Wojtowytsch, 2020]. Although this unique solution 7 represents the Barron function f, it is
not necessarily the probability measure for f with the smallest semi-norm. In order to find sparse neural
networks, there is a need for a method that minimizes this semi-norm as well.

1.2 Our contribution

In this work, we study the convergence and error analysis of finding the smallest measure p such that
the Barron function Kpu is close to f using the inverse scale space. This is the continuous and infinite
dimensional version of finding a sparse shallow neural network approximating samples of f.

In particular, we consider the minimisation problem

pCPt = argmin J(uh) (1.1a)
pteM(Q)
.1
s.t. uf € argmin §Hf - K,U/HiZ(p) (1.1b)
HEM()

where J encodes the Barron norm and acts as regularizer and L, is the adjoint of K. In section 2 we
define these operators more rigorously, and show that the associated inverse scale space is given by

pe = argmin Ry(p) up =0, (1.2a)
u€DJ* (pt)
Opr = Lp(f — Kpe) po = 0. (1.2b)

The data function f and the data distribution p are instance dependent, and the convergence behaviour
and the error analysis of eq. (L2]) are dependent on these. In machine learning, measurements of f are
noisy and the data sets always have a bias. Furthermore, computers are discrete beings. Hence, we
analyse eq. (L2) in the following four cases:
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1. Noiseless and unbiased case; we have access to f and sample from p.

2. Noisy case; we have access to f¢ with measurement noise instead to f, but we still want to find to
minimizer for f.

3. Biased case; we sample from p® with a sampling bias instead of from p, but we still want to find
the minimizer for p.

4. Discretized case; the parameter space € is discretized and no longer continuous.

The first shows how well eq. (I2) can be when we manage to reduce noise and sampling bias to a
minimum. The second shows how the methods deals with noise on the data function f. The third
provides a novel perspective on learning methods. It shows how well the method deals with a bias in the
sampling. In machine learning there is a large focus on computing the generalisation error of a method,
i.e. how large is the error you make when you solve eq. (ILT)) with only n samples of p relative to using
p in its entirety. This is one way of having a bias in the sampling. Another bias that one could have as
the goal to classify animals based on images to determine whether they are suitable pets, but one has
no images of fish. Our method captures both of these biases in one go. The last shows that the method
behaves nicely when the parameter space €2 is discretized.

We show in section 2l that the eq. (IL2)) is well-defined and determine its optimality conditions. After that
we discuss the aforementioned four cases in sections [3 to [6] respectively.

1.3 Background information

This section provides the relevant background information needed of Barron spaces and Bregman itera-
tions.

1.3.1 Barron spaces

Fix d € N and o as an element of C%!(R) or the ReLU activation function max(0,z). Let X C R% and
Q C R? x R. Consider a probability measure p € P(X), and define

Ku(x):/ﬂa(aT:chb)du(a,b). (1.3)

for p € M(Q). Barron space B, is the Banach space with functions of the form f = Kpu for some
pnE M(Q) and
1 = [t JoU+ ol + Pdlud D) o € COVR) »
B it rp=s Jo(lwll + [b]) ]l (w, b) o(z) = ReLU(z)
The functions in Barron space can be seen as infinitely wide or continuous versions of shallow neural
networks .
f: X >R, o~ Zcm(a}x +b;) (1.5)
i=1
with ¢; € R and (a;,b;) € Q [E et al., 12021]. Two embeddings are relevant for this work. They show that

Barron functions are nice enough to enable proper convergence.

Proposition 1.1 (Barron is Lipschitz; E and Wojtowytsch, [2020, theorem 3.3). If p € P1(X) is a
probability measure with finite first moments, then we have Lip(f) < Lip(o)|fl, for every f € B,.

Proposition 1.2 (Barron LP embedding; E and Wojtowytsch, 2020, theorem 3.7). If p € Py(X) is a
probability measure with finite ¢'* moments, then B, — LP(X,p) for all1 < p < q.
1.3.2 Bregman iterations

Let H be some Banach space, U be a (closed subset of a) thereof, f € H, J : U — R be convex, lower
semi-continuous and coercive, and R¢ : Y — R be convex, bounded from below and Fréchet differentiable.
The Bregman divergencd] between u,v € H for p € 9.J (v) is given by

D5 (u,v) = J(u) — J(v) — (plu—v). (1.6)

1The Bregman divergence is often called the Bregman distance, but it is in general neither symmetric nor does it satisfy
the triangle inequality.

Page 3 of



1 INTRODUCTION

The Bregman iterations

ug = argmin D (u, up—1) + AR g (u) ugp =0
uel (17)
Pk = Pe—1 — ARy (ug) po = 0,p € 0J (uy)

with design parameter A > 0 are an iterative 5-approximation algorithm for the bilevel minimization
problem
u! € argmin J(u)
ucl ' (18)
s.t. u € argmin Ry (@).
acu
The Bregman iterations converge monotonically to the optimal solution with worst case O(%) convergence
[Burger et al., 2007).

The inverse scale space flow can be derived from eq. (L) by taking the limit of A N\, 0. Before taking
the limit, observe that eq. (7)) is equivalent to

1
up = argmin X (J(u) - <pk1|u>) + Ry(u) ug =0 (1.9a)
weUNDJT*(pyi)
Pre — Pk—1 _ *auRf(uk) Po = 0 (19b)

A

Note, that usually eq. (LOB) has the subgradient constraint py € 9J(uy) instead of eq. (C9al) having
0J*(px) as additional constraint. These two ways of writing the constraint are equivalent by Fenchel
duality. In the limit of A \, 0, eq. (L9h]) can be seen as the Euler discretization of the flow equation

atpt = *auRf(Ut% Po = 05 (110)

and eq. (L9a) will find a uj minimizing R y(u) whilst enforcing that p, € dJ(u;) or equivalently u; €
0J*(p:) [Burger et al., 2006]. The inverse scale space is exactly this limit of A N\, 0 of the Bregman
iterations, i.e. the dynamical process given by

uy = argmin Ry(u) up =0, (1.11a)
u€UNDT*(py)
Opr = —O0uRy(ur) po = 0. (1.11b)

1.4 Notation and definitions

Let R denote the real numbers, and N denote the natural numbers without 0. The space of all Radon
measures—regular, signed Borel measures with bounded total variation—on a locally compact Hausdorff
Q is denoted by M(£2). It is a Banach space with the norm

el gy = / dlul (z),

where |u| is the total variation measure of ;. When {2 is compact and M () is equipped with the weak*-
topology, then M () is dual to C°(Q2), the space of continuous functions on Q. When 2 is unbounded,
then it is dual to CJ(f2), the space of continuous functions on € that go to zero at infinity. All Radon
measures p € M(Q) have a polar decomposition, i.e. there exists a sgn{u} € L*(Q, |u|) with |sgn{u}| <1
such that

dp(x) = sgnps} (@)l ().

The space of all probability measures on a set U with finite £*® moments is denoted by Py (U) C M(U).
The Wasserstein-1 metric between two probability measures p, m € P1(€2), can be computed by

Wilo.m) =sund [ f()dote) - [ f(yinto) \ rec@.Lipn) <1},

where Lip(f) denotes the Lipschitz constant of f. Given a set X, a positive number p € [1,00) and a
radon measure p € M(X), we write LP(p) instead of LP(X,p). If U C V is a convex set, V is a locally
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

convex space and J : U — R is a convex function, then the convex conjugate is written as J* and the
subgradient 0J of J at ug is given by

8J (ug) = {u %

J(u) — J(uo) > (vlu —uo)y. VYu € U}.

(Fréchet) derivatives of a function or operator f are also denoted Jf. If the derivative is a partial
derivative, then a subscript will be added to indicate the variable with which the derivative is taken.

2 Inverse scale space flow for Barron spaces

In this section, we start by defining the necessary functionals and operators to write down the inverse
scale space flow for Barron spaces. In section 2.1} we show how to get from the general form of the inverse
scale space in eq. (LTI) to eq. (Z33). Then, in section [Z2] we show that this flow is well-defined. Last,
in section 2.4, we derive several optimality conditions for the flow that are needed for the proofs of the
convergence rates later in this work.

Fix d € N. Let X C R? and Q C R¥*!, p € P(X) be a probability measure with bounded second

moment, o € C*1(R) or o(x) = max(0,z), V(a,b) = 1+ ||a| + |b] and f € L?(p), where we mean that
a € R? and b € R when we write (a,b) € Q. Use these to define the operators

K : M(Q) — L*(X,p), <:L' — / olaTz + b)du(a,b)) (2.1a)
Q
Ly P p) > 0@) 0 (@) = [ otolaa+0)dpta)) (2.1b)
X
T M) = [0.00), 1 [ Ve b)dlul(a.b) (2.10)
Q
1
Ry M(Q) = [0,00), s S| K= fllzax ) (2.1d)
We consider the task of finding
p°Pt € argmin J (') (2.2a)
utemM(Q)
s.t. pl € argmin Ry (p) (2.2b)
HEM()

The constraint in eq. (2.20) says that we are looking for a measure u such that Ky represents the L?(p)
projection of f onto Barron space, and eq. (2:2a]) highlights that we want the measure that induces
the Barron norm. We will search for the measure pu°P* using the inverse scale space flow. The flow
corresponding to eq. (Z2)) is given by

pe = argmin Ry(p) up =0, (2.3a)
u€dJ* (pt)
Ospt = Lp(f — Kyuy) po = 0. (2.3b)

In the following, we will assume that every uf we refer to has J(u') finite.

2.1 Derivation of the inverse scale space flow for Barron spaces

To derive the inverse scale space flow for Barron spaces, we start with eq. (7)) and eq. (ILII)). These
imply that the Bregman iterations and associated inverse scale space flow for eq. (Z2) are given by the
iterative process

e = argmin D (p, pug—1) + AR ¢ (1) o =20 (2.4a)
ueM(Q)
Pk = Pr—1 — ARy (1) po = 0,px = 0J (k) (2.4b)

and the dynamical system

pe = argmin  Ry(u) 1o = 0, (2.5a)
HEM(Q)NDJT*(pt)
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

Oepe = —0uR s (p1e) po =0, (2.5b)

respectively. First, observe that 0J*(p;) € M(Q). This shows that eq. (Z35a) and eq. ([Z3al) match.
Before we show that eq. (2.5D) is the same as eq. (2.3D)), we show that L, is in fact the adjoint of K.

Lemma 2.0.1. The adjoint L, is given by K, i.e. Ly = K.

Proof. Let ¢ € L?>(X, p) and u € M(), then, by Fubini-—Tonelli
K)o = [ [ alame+ v)dpt@rote)duta.)
= [ ] o@otama + bidp(a)dtab
QJXx

= <N|Lp¢>M(Q) .
From the definition of the adjoint it follows that L} = K. Q.E.D.

Note that K is the adjoint for all L, with p € P2(X), but that the difference between the various L, is
the inner product used.

Proposition 2.1. The variational derivative of R¢ is given by
3Ry (1) = L(Kp— ). (2.6)

Proof. Observe that

Rp(p+v)—Ry(n) — <8#Rf(u)|V>M(Q)

1m
171l At () =0 HVHM(Q)
2 2 *
BB G ) = Flagy — 1K= flag — KK = V) o)
= 1m
10 a2y =0 17l pe)
2 *
BRIy — (K FIEKY) gy — (K= DY) o) o
< im triangle ineq.
120 gy =0 171l pme)
2
%HKVHN(,))

= lim - def. of adjoint
11l a2y —0 HVHM(Q)

) 1 2
lim _ SIE /12l ) = 0-

- HV”M(Q)

Hence,
0uRy () = K*(Kpu — f). (27)
Combining lemma 2.0 with eq. ([277) finishes the proof. Q.E.D.

This shows that eq. (2.51) is indeed the same as eq. (2.3B), and thus that eq. (23 is the same as eq. ([2.3)).

2.2 Existence

To show that the inverse scale space flow of eq. (Z3]) has a solution, we use a theorem by Brezis[Brézis,
1973, theorem 3.1]. This theorem establishes that the differential inclusion equation

8tut + But c0 (28)

given some initial condition ug € dom(B) := {u € H | Bu # 0} has a solution. Here, B is a maximally
monotone, possibly nonlinear and possibly multivalued function over a Hilbert space H. We show that
for a suitably chosen maximal operator B, the solution to eq. (Z.8) exists, and that this solution is in fact
a solution to the inverse scale space flow of eq. ([Z3)).
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

The operators we need to show that are

A:C(Q) > M(Q), p—~ argmin  Ry(p), (2.9a)
HEIX (| |l o<1} (P)

B: L*(p) — L*(p), r+— KAV 'L,r) — f (2.9b)

B:L*(p) — L*(p), r = KOJ*(L,r) — f (2.9¢)

Lemma 2.0.2. The operator B is mazximal monotone.

Proof. J* is the Fenchel dual of J. Hence, J* is lower semi-continuous, convex and proper. L, is a
bounded linear operator, so J*o L, is also lower semi-continuous, convex and proper. Thus, r — 9J*(L,r)
is maximal monotone [Brezis, [1974]. Subtracting a constant from a maximal monotone operator preserves
maximal monotonicity, so B is maximal monotone. Q.E.D.
This means the operator B satisfies the requirements for Brezis, and we thus have a solution.
Proposition 2.2. For every x € dom(B) there exists a unique function r : [0,00) — L?(p) such that

1. r satisfies eq. Z8) for almost every t € (0, 00),

2. ry € dom(B) for allt > 0,

3. 1y is Lipschitz continuous on [0,00) with |[0yul| pec 0,00y 12(p) < 1B°(@)]l,

4. 7 is right differentiable for all t € (0,00) and 8; rs + B°(r¢) = 0 for all t € (0, 00),

5. t— B°(ry) is right continuous and t — ||B°(r¢)|| non-increasing,
where

B°(r) = argmin || 2, (2.10)
reB(r¢)

Proof. See theorem 3.1 of [Brézis, [1973). Q.E.D.

This does not show that eq. (Z3) has a solution yet, since this satisfies eq. (Z8) with the operator B
whereas eq. ([2.3) satisfies eq. [2.8) with the operator B.

Lemma 2.0.3. eq. 23) can be written as
Ori + B(ry) =0, r=0. (2.11)
Proof. Substituting eq. ([2.9a]) into eq. (23) gives
Ope =Ly(f — KAV 'py)), po=0. (2.12)
Replacing p; with L, gives us
Lyowry = L,(f — KAV ™'L,rt)), 10 =0. (2.13)

Since L, is a bounded linear operator and thus continuous, » must satisfy

Ory = f— KAV 'Lyry), 10=0, (2.14)

or equivalently
Ore + KAV~ 'Lyry) — f=0, 7o=0. (2.15)
Substituting eq. (2:9d) into eq. ZI5) gives eq. ZII)). Q.E.D.

To show that there is a solution to eq. (23)), we use the listed properties of the solution from proposi-
tion

Proposition 2.3. Fquation Z3) has a solution for every uo and po satisfying po = A(V"'L,ry) and
po = L,ro for some rog € dom(B). In particular, eq. 2.3) has a solution for py =0 and po = 0.
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2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

Proof. Let r be the solution from proposition 2.2 with initial condition rg € dom(B). Since
=X < (2.16)

we have that

B°(ry) = argmionHLz(p) = K( argmin ||[Kp— f||L2(p)) —f=KAWV 'Lyr) — f= B(ry). (2.17)
z€B(r¢) neDJ*(Lyre)

So in fact, 7 also solves eq. (Z8) with B, which has the same solution as eq. (Z3)) by lemma 20.3. What
remains is to map the solution 7 to y and p using p¢ := A(V"'L,r;) and p; := L,ry. Q.E.D.

Remark. Note that this p; is not unique in general. Since the difference between non-uniqueness is from
the null space of K, this does not impact any of the later statements.

2.3 Regularity
The regularity that proposition puts on the solution r carries over to p and p.
Proposition 2.4. p € L*([0,00), M(R)) and p € WH>°([0,00),C(£2)).

Proof. Recall from proposition 2.3 that {|0;r(| 1o (0,00),12(p)) < [/l 22(,)- This implies that

t
||rt||L2(p) < /0 ||65r5||L2(p)d8 < t||f||L2(p)- (2.18)

We will use this in the norm bounds for both p and p.
For the regularity of p, observe that
1l et = 1K aaay sz < 0 (2.19)
by lemma [20.1] and proposition [[21 Since d;p; = L,0;rt, pr = L,y and 1y € L?(p), we have
||pt||c((z) = ||Lprt||c(9) < ||LP||L2(p)—>C(Q)||rt||L2(p) < t||Lp||L2(p)_>c(Q)||f||L2(p)a (2.20)
||8tpt||c(9) = ||Lpat7’t||c(g) < ||LP||L2(p)*>C(Q)||8t,rt||L2(p) < ||LP||L2(p)A)C(Q)||f||L2(p)' (2.21)
by eq. (ZIX), (3) of proposition 23 and eq. ZI9). Hence, p € W>-1([0,T),C(R)) with
||p||wlvoo([o,T),c(Q)) < max(lat)||Lp||L2(p)_>c(Q)||f||L2(p)- (2.22)

For the regularity of u, observe that

kel py < I (1e)
= (pe|pe) M(Q) Fenchel duality

= <7”t|KMt>L2(p)
= ||7“t||L2(p) ||K,ut||L2(p) Cauchy-Schwartz

= lrell 2 I e = f + fll 2
< il (155 = Pl + 151 triangle ineq.
< 2rell 2 1 £ 112
< 2t||f||2LZ(p)- eq. 2I8)
Hence, u € L*°(]0,T), M(Q2)) with
1iall e 0,7, a0y < 2T 72 - (2.23)

Since the solution r is unique and the shown regularity holds for all 7' > 0, we can extend the regularity
to the interval [0, 00). Q.E.D.

Page 8 of



2 INVERSE SCALE SPACE FLOW FOR BARRON SPACES

2.4 Optimality conditions

We have now proven the existence and regularity of the solutions to eq. (23]). In this section, we will have
a look at some of the conditions that must hold for the optimal solution. In particular, the orthogonality
condition and the source condition.

We first consider the orthogonality condition. This is a necessary condition, not a sufficient condition.

Proposition 2.5 (Orthogonality condition).
L,(f — Ku') = 0. (2.24)

Proof. For u' to be a minimizer of R £, it must hold that

Ry (ut) =0. (2.25)

Recall from proposition 2.1] that
OuR s () = Ly(f — Kp) (2.26)
Substituting eq. (Z26) into eq. (220 finishes the proof. Q.E.D.

The second condition we consider is the source condition. This is akin to the existence of a Lagrange
multiplier [Burger and Osher, [2004].

Proposition 2.6 (Source condition). The source condition is satisfied by ' if there exists a ¢ € L*(X, p)
such that
Lp(a,b) = V(a,b)sgn{u'} pula.e. (2.27)

and
|Lo(a,b)| < V(a,b) (2.28)

for all (a,b) € Q.

Proof. We repeat the steps of Bredies in [Bredies & Pikkarainen, 2013, around (4.1)], which in turn in
based on [Burger & Osher, 2004, below def. 1]. The source condition is satisfied by u' if there exists a
¢ € L?(X, p) such that

K" G/QV(a,b)d|-|(/ﬂ). (2.29)

From the definition of the subdifferential it follows that eq. (Z29) can only be satisfied when

for all v € M(Q). Since
(K*0|v) gy = (B1EV) 12 = (Lo®lV) 0y (2.31)

by the definition of the adjoint and lemma 2.0.1] eq. (230) is equivalent to

<LP¢|V>M(Q) —/QV(a,b)d|V| < <LP¢‘IU’T>M(Q) —/QV(a,b)d’/ﬂ‘ (2.32)

Equation (Z.32) must also hold when we take the supremum of the left-hand side.

sub (Lol ey~ [ V@D < (Ldlit) oy ~ [ Via bl (2.33)
veM(Q) Q Q

Every measure v € M(Q) has a polar decomposition such that
dv(a,b) = sgn{v}(a,b)d|v|(a,b). (2.34)
This allows us to write eq. (Z33) as

GS/BII()Q) (Lpo — Sgn{V}V|V>M(Q) < <LP¢ sgn{/ﬂ} - V’ ’NT ’>M(Q) (2.35)
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3 IDEALIZED SETTING

The right-hand side is bounded, so must the left-hand side. If L,¢(a,b) > V(a,b) for some (a,b) € Q,
then the left-hand side can be made arbitrarily large by concentrating a large positive v around that value.
Similarly, if L,¢(a,b) < —V(a,b) for some (a,b) € Q, then the left-hand side can be made arbitrarily
large by concentrating a large negative v around that value. Hence, L,¢ must satisfy

|L,p(a,b)] < V(a,b). (2.36)
Inserting this bound into eq. ([Z38]) gives
0= sw (Lo — sen{v}VIV) sy < (Lpdsen{n'} = V][u']) ) <0 (2.37)
ve
Hence,
L, =Vsgn{u'}, pulae. (2.38)
Q.E.D.

Note that the source condition described in proposition implies that p; must vanish on the set

Q0 = {(a,b) €0 ‘ —V(a,b) < pea,b) < V(a,b)}. (2.39)

3 Idealized setting

In this section, we prove that both the L? loss Rf(u) and the Bregman distance D (uf, 11;) decrease
monotonically to the optimum value in an ideal setting. The rate at which both of them decrease is of
order O(1/t). This rate is independent of the input dimension d.

Theorem 3.1 (Ideal case). Ry¢(ut) is decreasing in time with bound

Rf(ut)S'Rf( )+%MT) t>0 a.e. (3.1)

and

O, DY (', pg) <0 t>0 ae. (3.2)
with equality only when u: minimizes R¢. Moreover, if ¢ € L*(X, p) is the function such that the source
condition of u' is satisfied, then

2
I611722(,)

DY (uf, ) <
J (/’L 7Mt) = 2t

(3.3)
for almost every t > 0.

First, we will show the rate of change of the L? loss R (1) and the Bregman distance D% (u', 1) under
ideal conditions.

Lemma 3.1.1. Ry(u:) is decreasing in time.

Proof. This follows directly from proposition 2.2] point 5. Q.E.D.
Lemma 3.1.2.
0e DY (', ) < Ry () = Ry (he) <0 (3.4)

holds for almost every t > 0.

Proof. This follows from

D ) = 0 (1)~ )~ W - w«n)

= (Oepel e — ') vy ) — 0 (e) + (PelOeiie) puey

= (Ope|pe — T>M @) pe € 0J ()
< Rf(,u ) — Ry () —0ipe € ORy(11e)
<0. uT minimizer

Q.E.D.
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3 IDEALIZED SETTING

Proposition 3.1. For allt > 0, it holds that

0% (o) < 0 (3.5)
when
”f - K:U/tHLZ(p) > Hf - KIUTHL2(p) (36)
as well as when
[Kn" = Kpe| 2, > 0. (3.7)
Proof. Equation ([3.6]) holds if and only if
Ri(ph) < Ry(p)- (3.8)
Recall from the proof of lemma that
8D (1t ) < Ryp(u') = Ry (o) (3.9)

The combination of eq. (IBEI) and eq. [3.9) proves the first statement. For the second statement recall
from the proof of lemma B.1.2] that

0e DY (1, pe) = (Bepe| e — MT>M(Q) : (3.10)
Hence,
D ('l pe) = (Oepe|pe — i) M©Q) eq. @.I0)
= (Ly(f — Kp) ‘l‘t > M(Q) eq. @2.3)
= (Lo(f = Kpe) = Lo(f = KpD)|pe — 1) i 0 proposition 27
= (Ll (Kp' = Kp) e — >M(Q)
= (Kp" — Kpe|Kp — Kp >L2(p) lemma 2.0.1]
= *HK“ - KWHN(,J)'
Clearly, this is strictly negative when eq. [B.7) is satisfied. Q.E.D.

Lemma[3. T2 and lemma B.T.]show that under ideal conditions the Bregman distance and the population
loss respectively are decreasing, and proposition 3.1l shows that this decrease is strict. We will now use
these to show that the Bregman distance and the population loss converge and give a rate at which they
do that.

Proposition 3.2. If uf satisfies the source condition through ¢ € L?(p), then

2
" N2z,
DY (' ) < o1 (3.11)
for almost every t > 0.
Proof. Define
Over =Kl — Kpy, eg=0 (3.12)
and
= L,o. (3.13)
Observe that
6tpt L 8tet, Po = 0= Lpeo. (314)
With this we obtain
1 2
Oc| 5ller = Sll2() | = (Orerler — D) pagy)
:<K/LT*K,U't‘et7¢>L2(p) €q. (m)
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3 IDEALIZED SETTING

= (Ly(es — qb)’,uT - 'ut>/v((9) lemma 2.0.1]
= (pe = | — pe) py eq. BI4), eq. BI3)
T
—(D”‘ (uf, ) + DP (%u*))
Hence,
1
0 5llet — 0l ) + Dl o) <0
Integrating from 0 to ¢ gives
DP (s + Sller = By — Slleo — Bl <0 (3.15)
o Ky s )AS ) e — @ L2(p) 5 e — @ 2(p) S U- .

Therefore

DP (il ) = - /D’“ 1t pe)d

= / DPs (uf, pg)ds + = / / d; DP7 (', pr )drds Fund. th. of calc.
< - / DPs (uf, pug)d lemma B.1.2]
1
<~ ller = 61y + mlleo — 6l2aq, eq. @T5)
2
< Q—tHeo = Ol
1
= §|‘¢||i2(p)' eq. (3.14)
Q.E.D.
Proposition 3.3. We have
J(ut
Ry(pe) < Ry () + L (3.16)
for almost every t > 0.
Proof. Observe that
t
D ) = (0= ) (Ry ) = Ry ) ) = D ) = [ (Rt = Ry )
t
< D5 to) = [ (R = RyGur) Jar - femna BT
t
< DR () — / O DY (', iy )dr lemma B.1.2]
= Db (', ). Fund. th. of calc.
Hence, we obtain after rewriting
DY (uf, ps) — DY (uf, o
Ri(us) < Ry(uh) + =L ( 275 s ()
Dps IU’T):u’é) t
<Ry () + LUI) DY () > 0
Dps T s
SRf(HT)JFM 0<s<t
DPo T
< Ry(ph) + == (’Z L) lemma (312
J(ut
=Ry (uh) + %
Q.E.D.
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4 MEASUREMENT NOISE

4 Measurement noise

In this section we prove that with noise on the measurements, the method will converge with O(1/t) to
the solution that best fits the noisy data. If the noise is small enough, then it will at first get closer to the
noiseless data, too. After some time, the method will start to get close to the solution for the noisy data
and will start moving away from the solution for the noiseless data. The point at which this transition
is of the order of the noise, and suggest that the method should be stopped early in the presence of
measurement noise.

In the remainder of the work, we consider f° to be some perturbation of f such that

"f6_f"i2(p) <9 (4.1)

with 6 > 0. When using f? instead of f, the flow in eq. [Z3) changes. For this section, we will keep
referring to the solution based on f with p and p whilst we will refer to the solution based on f° with v
and q.

Theorem 4.1 (Measurement noise). We have

O DP ('t 1) < % t>0 ae. (4.2)
and
oD% (u', 1) <0 t>0 ae. (4.3)
when
1 = Bwillgagy > 5+ |17 = Kt (4.4)
as well as when
[ Ku" = K| o, > 6. (4.5)

Moreover, if u' satisfies the source condition through ¢ € L?(X,p), then
g/t 1 6%t
DY (t,11) < (16l gy + 007 + (4.6)
for almost every t > 0.
To prove this, observe that the flow for f° has the same properties as the flow for f.
Lemma 4.1.1. Rys(v4) is decreasing in t.

Proof. Swapping the role of f and f9, i.e. considering f to be a perturbation of f°, implies that Rys(vt)
should behave the same as Ry (u;) from lemma B.T.Il Thus, Rs(v;) is decreasing in . Q.E.D.

Lemma B.1.1] shows that the inverse scale space converges with f9, but it does not tell us how close it
will get to the best solution for f.

Lemma 4.1.2. 52
A, DV (uf, 1) < T (4.7

holds for all t > 0.

Proof. Recall from the proof of lemma that

0, D% (u', 1) = (Ovqe|ve — uT>M(Q) . (4.8)
Hence,
0D (M V) = <<9tth|1/t - MT>M(Q) eq. ([A38)
:<L(f6—KVt)|Vt—,LLT>M(Q) eq. (23a)
= (L(f° — Kw) — L,(f — K,uT)‘ut - ,uT>M(Q) proposition 2.5
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4 MEASUREMENT NOISE

:<f5—f+K/ﬂ—Kut’Kut—KuT>L2(p) lemma 2.0.1]
= <f5 — f|K1/t — K,LLT>L2(p) — <K1/t - K[L”Kl/t — K,LLT>L2(p)
<|F7 = Fll e 150 = K| oy = 1 — Kpf|[2, Cauchy Schwartz
< in‘s — inz(p) Young’s product ineq.
52
< —.
— 4
Q.E.D
Proposition 4.1. We have
DY (', 1) <0 (4.9)
for allt > 0, when
||f5sz/tHL2(p) >5+Hf—K;ﬂ||L2(p) (4.10)
as well as when
[Kpt = Kvi| a0, > 6. (4.11)
Proof. For the first statement observe that
0. DY (', v) = (Braeve — ')y eq. (BI0)
= (L(f° = Kv)| — u¥) () eq. (Z.3a)
M(Q)
:<f57KVt‘KVt*KuT>L2(p) lemma 2.0.1]
= <f67KVt‘KVt7f6+f67f+f7K,uT>L2(p)
2
= 7Hf6 - KVtHLz(p) =+ <f5 - KVt’fzs - f+r- K,UT>L2(p)
< —|1F5 = Kunllgay + 10— £+ F = K| o 1B — K| o, Cauchy Schwartz
< —Hf5 - KVtH2L2(p) + (5 + ||f — KMTHLZ(p)) ||f6 — KVtHL2(p). triangle ineq., eq. (@I
Clearly, this is strictly negative when eq. ([@I0) is satisfied.
For the second statement recall from the proof of lemma that
2
0D (' ve) < |[F° = Fll pog 1B = KiiT|| o) — [ B0t = K[| 0 )
Clearly, this is strictly negative when eq. [@I1]) is satisfied. Q.E.D.

From proposition 1] and lemma 1.2 it follows that the Bregman distance D (uf,14) is guaranteed to
converge until R s (1) is close to Ry (u'). We know from lemma LTIl that R ;s (1) will go to a minimum
of Rss. So we expect the Bregman distance DY (u',v¢), unlike the Bregman distance DY (1T, 1), to not
go to zero. The following proposition exemplifies this.

Proposition 4.2. If u' satisfies the source condition through ¢ € L?(p), then

DY (1) < = § g 4.12
Bt ) < o (10l oy +0t) + 5 (412)
for almost every t > 0.
Proof. Define
ey = fO —Kvy+ Kut — f, eg=0. (4.13)
Observe that
&gqt = Lpatet, qo = 0= Lpeo. (414)
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4 MEASUREMENT NOISE

Using this definition of e; we obtain

1
o 3ller — el ) = Orees — o)

:<f5*KVt+KMT*f‘€t*¢>L2(p) eq. (EI3)
= <f6 - f’et — ¢>L2(p) + <KMT - Kthet — ¢>L2(p)
< Hf6 - fHLz(p)Het — ¢||L2(p) + <K/[r - Kyt’et - ¢>L2(p) Cauchy-Schwartz
S5||et*¢||L2(p)+<KMT*KVt’€t*¢>L2(p) eq. (AJ)
= dllee = Bll 2y + (Lolee = O)|uh = 14) pyq lemma 2.0.T]
= dlle: — ¢||L2(p) + <Qt -Pp ‘HT - Vt>M(Q) eq. @I4),p' = Ly(9)
= 6ller — bl 2y — (@ — PV = “t>M(sz)
Since
0 < DY (,U'Ta v) + D.I}T (VtaMT) = <Qt —PT}Vt - MT>M(Q) ) (4.15)

where the inequality stems from that ¢; and p' are from the subgradients 0.7 (1) and 8.J (u!) respectively,
we obtain

1
0 3llet — 0l ) < 3ler = 0l (4.16)
Solving this for [le; — @||,2(,) gives
llee = @l 2y < lleo = Bll 12,y + 0t = [0l 2 () + 6. (4.17)
Hence,
1 2 Dt T p t
O §||€t = Ol | + D (u've) < bllee — @l 2,y — DY (ve, 1)
< 019l 2 + 8%t

By integrating both sides of the equation, we obtain

1
[P + 3l = iy < 3101+ 6l + 3070

(4.18)
) 2
= (16122, + 1)
Therefore,
DY ,u fit) /D ,U pe)d
= t/ D% (1, ) /8 DY (uf, pr)drds Fund. th. of calec.
o
52 t
S Dst (uf M5)+Z/ drds lemma [£.1.2]
s 5
= D ot vg) 4 —(t— s)ds
52
- D% (ut, v)ds + -t
t/o (u',vs)ds + 3
1/1 2 52
< 1 (5 (1002 +60) " = et = o3y ) + ca. (19
1 , 8
< Q—t(||¢||L2(p)+5t) + gt
Q.E.D.

Proposition shows us that we should not continue to ¢ — oo, but should stop earlier. In particular,
the bound for eq. (I2) is lowest for ¢(§) = O(671).
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5 BIASED SAMPLING

5 Biased sampling

In this section, we prove that a bias in the sampling gives a similar behaviour as noisy measurements.
However, the terms and bounds differ depending on how the biased sampling is expressed. We consider
sampling expressed in terms of a condition on either the Radon-Nikodym derivative or the Wasserstein-1
distance.

For the remainder of this work, we consider p® € P2 (X) to be some perturbation of the true distribution
p € P2(X), also with bounded second moment. We assume that f € L?(p) N L?(p). For this section, we
will keep referring to the solution based on p with p and p whilst we will refer to the solution based on
p¢ with v and ¢q. We will also assume that every v we refer to has J(v') finite.

Theorem 5.1 (Biased sampling of p — Radon Nikodym). If p* < p and

£
Hl - Cllp <e, (5.1)
P llLee(p)
then
Oy DP (', 1) < 0 (5.2)
when
1f = Kvillpogey > 1+ f = Kpl| o, (5.3)

Moreover, if ut and vt satisfy the source condition through ¢ € L*(p) and ¢ € L?(p°) respectively, then

1 e 1 [t
D T - 2 - _ 2
DY (' ) < 2tH¢HL2(p) i Qt/o /0 [Kvr — Kvs||72 (e dsdr

(5.4)
Qe+ VIS = Kutag,, + 57 = Kol
for almost every t > 0.
Theorem 5.2 (Biased sampling of p — Wasserstein). If f € C%!(supp(p — p°)) and
Wi (p, p°) <e, (5.5)
then
oDP (1T 1) <0 (5.6)
when
If - KVtHiZ(pE) > 2| f - K’U/‘ruz(owl)(supp(pfpg)) +|f - KMTHiZ(p)' (5.7)

Moreover, if ut and vt satisfy the source condition through ¢ € L*(p) and ¢ € L?(p°) respectively, then
Dt
D (M Vt = 2tH¢||L2(p) +teg Hf KIU/ Hco 1 (supp(p—p°))

+Z/O /0 1KV = Kvsllcos supp(o—pey dsdr + g | KT = K[ 12,0,

for almost every t > 0.

Theorem [B.1] refers to the Radon-Nikodym derivative condition, whereas theorem refers to the
Wasserstein-1 distance condition. To prove these theorems, we first consider a general disturbance with
no particular conditions on the perturbation p®. Afterwards, we refine the statements from the general
disturbance under the two mentioned conditions in sections [5.1] and

Lemma 5.2.1. We have
oD (,U' Vt _Hf K,LL ||L2(p) (59>

as well as

9, D% (uf, 1) —HKV — K[, (5.10)

for almost every t > 0.
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5 BIASED SAMPLING

Proof. The first statement follows from

0. DY (', v) = (Braeve — ')y eq. (310)
= (Lpe(f = Kwe)|v — MT>M(Q) ea- @&3)
=(f — Kv|K(vy — HT)>L%£) lemma Z0.T]

<f — KVt‘KVt - f + f - KMT>L2(ps)
=—|f- KVtH2L2(pe) + <f - K“T‘f - KVt>L2(p5)
—\f- KVtH2L2(pa) + Hf — K/’LTHLZ(pE)Hf — KVtHL2(p€) Cauchy Schwartz

IN

IN

in - KMTHiz(ps)- Young’s product ineq.

The second statement follows from

DY (1) = (Opau|ve — ,UT>M(Q) eq. (3.10)
:<Lpg(f—KVt)‘ut—,uT>M(Q) eq. ([Z3)
= {(—Lye(f — Kvl) + Ly (f - Kuy)|ve — H’T>M(Q) proposition 2.5l
= (Lye (Kvt — Kuvy)|vy — MT>M(Q)
= <KVT—KVt‘K(Vt—uT)>L2(pE) lemma 22071
= <Ku1L — Kyt‘Kyt — Kuvt+ Kot — KMT>L2(,;€)
2
= f”KVJf — Kl/tHLQ(pa) + <Kl/1L — Ku”KlﬂL — Kl/t>L2(pE)
< fHKVJf — KVtHiZ(ps) + HK}/Jf — K‘LLTHLZ(pE) Kut — KVtHLZ(pE) Cauchy Schwartz
1 2 .
< ZHKVT — KMTHLz(pE)- Young’s product ineq.
Q.E.D.
Proposition 5.1. We have
DY (u', 1) <0 (5.11)
when
1 = Kvnll ey > [ = Kl g (5.12)
Proof. Recall from the proof of lemma [BE.2.T] that
t 2
0D (1) < —1f = Kvnlagyey + 1 = Kt o) I = Kthll ey (5.13)
Clearly, this is strictly negative when eq. (B.12]) is satisfied. Q.E.D.

Lemma [(.2.1] and proposition B.1] tell us, just like lemma AT for the noisy case, and as intuitively
expected, that the flow will converge until the solution matches the residual. This, however, does not
tell us how well it approximates the residual on p. We will refine this when we consider the more specific
disturbances.

We will now provide an upper bound for the Bregman distance.

Proposition 5.2. If ut and v satisfy the source condition through ¢ € L?(p) and ¢ € L?(p®) respectively,
then

1 Lot
DPt T < — 22 —// KT*KS225 dsd
7)< gpllolagy gp - f) 1Eve = Kveliagepdsdr (5.14)

t 2 t + 2
+ ZHf - K“THLZ(,JL,J) + gHKV - K“THLZ(,JE)

for almost every t > 0.
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5 BIASED SAMPLING

Proof. Define
and

With this we obtain

1
O <§||€t - ¢||2Lz(p))

Orer = Ku' — Ky, e = 0. (5.15)
= L,¢. (5.16)
<8tet|et >L2(p)
<K,uT — Kyt‘et >L2(p) eq. (BI5)
< pler — @) ‘u —l/t>M(Q) lemma Z.0.7]
= (Lpler = ) — ar + ae|u’ —wr) M(Q)
={q — Lpd + Lper — qi|p — Vt>M(Q)
<Qt p |M >M(Q) <Lpet - qt|MT - Vt>M(Q) €q. m
(Dqt (', 1) + D¥ (v, o )) + (Lper — gt — Vt>M(Q) : eq. (@.I5)

The rightmost term can be bounded by

<Lp€t - Qt’/ﬂ — W

t

<LP(I(MT - KVS)

(L

t

p(f — Kvg) —

t

t

(f = Kv|Ep' —

t

t

Il
S T T S S T

2
- HKVt - KMTHLz(pi—p)

t
= [ 17 - Kut + K
0

2
= [|Kv = Kl 1,

IN

t 2
5”'}0 - KMTHLQ(pE—p)

Hence,

1
at(§|€t ¢|L2(p)) + DP (il ) _Hf Ky HL2

Lpa(f*KVS)“LLT —

(Lop—pe (f = Kv)|u' —

(f = Kvs|Kve — K“T>L2(pffﬂ)
(f = Kp' — Kvy + Kpt + Kvy — Kvg|[Kvy — K“T>L2<p

<f—KMT+KVt—

= B[ ey | K = Kt

>M(Q)
t
/0 <85(Lpes - QS)‘,UT -V

t>M(Q) ds

—Lps(f—Kus)‘/ﬂ—ut ds

>M(Q)

>M(Q) ds

Vt>M(sz) ds

ds

KVt>L2(p—p5)

ds

KVS}KVt - KMT>L2(pa,p)

ds

(p==p)
ds

s —p)

t
(0 = 0y 10 = Bl Y 5= B

2
- HKVt - KMTHLZ(ps—p)

1 [t 2
3, W= Ky

ds

1/t 5
ds+§/0 [Kve — Kvs| 72— ) ds

1 5
+§/0 HKl/t*Kl/SHLQ(pE_p)dS.

(p=—p)

Page 18 of 30

1/t 5
N 5/0 K — Kl ds.

Fund. th. of calc.

eq. (519)

proposition

lemma 2.0.1]

ds

c—p)

Cauchy Schwartz

Triangle ineq.

Young’s prod. ineq.
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5 BIASED SAMPLING

Integrating from 0 to ¢ gives

¢ 1 t2 2
s (gt 2112 Y~
/0 DPs(u', vy)ds < 2||¢||L2(p) +7 | f—Kp HLQ(p eyt / / |Kv, — Kus|\L2(p _pydsdr. (5.18)

Therefore, we obtain

Dpt(MT’Vt): /Dptu v)d

| /\

t/ DPS(M Vs) /8 DPT(M v;)drds Fund. th. of calec.
0

I /\

t
?/o Dps(uf’ys)jLZHKVT_KNTHLQ(IJE)/S drds lemma B.2.1]

1/ 1 2
E/O DPS(MT7VS>+ZHKVT7K,LLTHL2(pa)(t75)dS

1 [ t 2
;/0 Dps(uTavs)dSﬂLgHKVT—KNTHH(pE)

1 5 1 t T 5
T R N L A R ca. (5I5)
t 2 t 2
| - T Z T_ T
+ 1 = Koy + IV = Kl [0
Q.E.D.

The bound of eq. (B.14) in proposition [(.2]is similar to that of eq. ([@I2]) in proposition 2l If v; remains
constant for all ¢ after some time 7" > 0, then

I 1
E/o/o HKVTle/5||L2(p57p)dsdT:O(lJr?) (5.19)

for all t > T'. This implies that eq. (&14), just like eq. (Z12), has a term that is inversely in time, a term
constant in time and a term that is linearly increasing in time.

5.1 Radon Nikodym

The first type of disturbances is expressed in terms of a bound on the Radon Nikodym derivative. This
allows for going from the norm using one measure to the norm using the other measure by adding a
multiplicative constant.

For this subsection, we refine our definition of p* by assuming that p° is absolutely continuous with
respect to p with

d &
H1 - d” <e. (5.20)
P AlL>=(p)

Lemma 5.2.2. For all g € L?(p)
191122 (ppe) < €ll9l1Z2 () (5.21)
191172y < (1 +)llgllZz (5.22)

and for all g € L?*(p°)

(1- 5)”9“12(,3) < ||9H2L2(pe)- (5.23)

Proof. The first statement follows from
19132y = | 8 @)ilo~ 5)(o)
d(p — p°
= [ @D i
X P
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5 BIASED SAMPLING

£
< H1dp
< 3

/ 62 (x)dp(z)
Le(p) /X

2
< ellglizagy-

For the latter two observe that eq. (B.20]) means that

d £
1-¢c< dpp <1+e pae. (5.24)
Hence,
lolaiy = [ (@) = [ 2@ @hote) < (14 <)ol
L2(p%) . . dp = L2(p)
as well as

19120y = [ #*@o (@) = [ @) El@nle) = (1= lal

Q.E.D.

Using the transformation rules of lemma [5.2.2] we can provide conditions on when the rate of change of
the Bregman distance is negative, similar to before.

Lemma 5.2.3. We have

DY (', 1) <0 (5.25)
for every t > 0, when
1f = Kvell g2,y > (1 +e)||f - KHTHL%)) (5.26)
as well as when 1+
€
”f - KVtHLZ(p) > :Hf - KNTHL2(/)) (527)
and € < 1.
Proof. Observe that
2
3tD3t(MTth) < Hf - KMTHLz(pE)HKVt - f||L2(p5) — [[Kvy — f||L2(p5) eq. (B.I3)
2
<1+ E)Hf - KMTHLz(p)HKVt - f||L2(p) = [|Kv — f||L2(p5) eq. (£.22)

2
<1+ E)Hf - KMTHLz(p)”KVt - f||L2(p) — (=) Kve - f||L2(p)- eq. (B.23)
Clearly, 0, DY (ut, 1) is strictly negative when either eq. (5.26) or eq. (5.27) is satisfied. Q.E.D.

When comparing eq. (5:26) with eq. ([£I0), we see that the sampling bias adds a multiplicative term
based on . This is unlike the noisy case, where we got an additive term. Likewise, the upper bound for
the Bregman distance also gets some multiplicative constants depending on €.

Proposition 5.3. If ut and v1 satisfy the source condition through ¢ € L*(p) and ¢ € L?(p®) respectively,
then

1 e 1 [t/
D t - 2 s - _ 2
DY (u's pe) < 21t||¢||L2(p) + 1+€2t/0 /O [Kvr = Kvg||72,e dsdr

. . (5.28)
2 2
+ (25 + 1)1“.](‘ - K,U/THLZ(/)) + ZHf - KVTHLZ(ps)
for almost every t > 0.
Proof. From the transformation rules of lemma it follows that
t 2 t 2
ZHf_KMTHLz(pE—p) SEZ||f_KMT||L2(p) (529)
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as well as ) ) )
Ky — KVsHL2(pe_p) = || Kvr - KVsHL2(pe) — [ Kvr — KVsHLZ(p)
2 2
< || Kve = Kvsllg2e,e) — 11z 1K vr = Kvl[72 ey
1 (5.30)
=(1- 1—+€)HKVT — K| 7200
€ 2
= 1—_*_EHKVT — KV5||L2(p€)'
Additionally,

2
1w = Kp o,
2
= HKVT _f+f_K/’[’THL2(pE)
2 2
= BV = Flla ey + 15 = Bi [ ey + 2 (BT = FIf = KT o

= ||K1/T — f||2LQ(pE) + Hf — KuTHQLQ(pg) + 2HK1/Jf — Cauchy Schwartz

= 2HKVT — inZ(pE) + 2Hf — K/’[’THiZ(ps) Young’s product ineq.
<2 Kv" = [y + 20+ F = Kl eq. (522)
(5.31)

Bounding eq. (B.I4) using eq. (530), eq. (529) and eq. (B31) gives the sought for expression. Q.E.D.

Note that when we take the limit of € — 0 of eq. (B28]), then we get

DYl ) < 1013 ) + 1S~ Kt (5.32)

— 2t
This shows that the bound for the Bregman distance in proposition B3] unlike the bound in proposi-
tion 5.2 is no longer tight in e.

An interesting source of bias is when p® is a subsampling of p such that || f]|| L2(p) 18 a Monte Carlo
estimator of || f[|2(,). Clearly, p° < p and ¢ is finite. This means that subsampling is a special case of
Radon Nikodym bias and that we can use proposition 5.3l At the same time, the fact that [|f[[;z(,.) is
a Monte Carlo estimator allows us to provide an alternative to eq. (5.28).

Proposition 5.4. Let p € P4(X) be a probability measure with bounded 4 moment, p° be a subsampling
of p with m(e) € N samples, § > 0, and f € L*(p) N L*(p). If ut and v satisfy the source condition
through ¢ € L%(p) and ¢ € L?(p%) respectively, then

T 2
|Kvr = Kvs||pa(,)dsdr

Lol +;/t/|
2t L2(p) 2t\/m(5)(5 o Jo

U wetl? et
+ T(E)(s"f Kpt[a, + gllEv

for almost every t > 0 with probability at least 1 — 6.

D? (MTv Vt) <
(5.33)

2
K[

Proof. Since p has bounded 4" moment, we get by proposition [L2 that Ku € L*(p) for all u € M(RQ).
From Chebychev’s inequality it follows that

2
| Kv, —Kusl\iz(psfp)‘ = ’ /X \Kv(z) — Kvg(z)|*dp® (@ / \Kv,(z) — Kvg(x)|*dp(x) (5.34)
2
JilK0r(a) = (o) dote) — ([ Kvelo) - Kus<x>|2dp(z>>
< 5.35
- m(e)o (5:35)
4 4
_ HKVT_KVS||L4(p) - HKVT_KVSHL?(,)) (5.36)
m(e)d '
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4
| Kvr — KVS||L4(p)

Y (5.37)
with probability at least 1 — §. Taking the square root on both sides gives
2
2 ”KVT*KVSHUL
IKvr — Kvil[]ae_, < — @ (5.38)
Similarly,
f112 "f_KMT"i4(p)
|f = Ku HLz(pa,p) < W (5.39)
Substitution of eq. (B38)) and eq. (E39)) into eq. (5I4) gives eq. (B33). Q.E.D.
Note that when we take the limit of m(e) — oo of eq. (&33)), then we get
1 2
DY (uf, i) < §||¢|\L2(p)- (5.40)

This shows that the bound for the Bregman distance in proposition[5.4] like the bound in proposition [(5.2]
is tight in €.
5.2 Wasserstein

The second type of disturbances is expressed in terms of a bound on the Wasserstein metric. This allows
for going from the norm using one measure to the norm using the other measure by using the duality
between Wasserstein and the Lipschitz continuous function with Lipschitz constant at most 1.

For this subsection, we refine our definition of p® by assuming that the Wasserstein-1 distance between
p® and p is bounded through ¢, i.e.,
Wi(p®.p) <e. (5.41)

We also assume that f € C%!(supp(p — p°).
Lemma 5.2.4. For all g € C%*(supp(p — p°)

2 2
||gHL2(p5—p) S 2||g||C0v1(supp(p5—p)€' (542)
Proof. Recall that

Wi(p®,p) = sup  (h|p® = p) gy -

hect(x)
Lip(h)<1
Since for all g € C%!(supp(p° — p))
. g
Lip(— <1, 5.43
(sz(g)) (5.43)
we obtain
. g . .
(910" = P) mxy = Lin(g) < ——|p° — p> < Lip(9)W(p%, p) < Lip(g)e, (5.44)
Lip(g) M(X)
where we used eq. (5.41). Furthermore, Lip(|g|*) < 2||g||(230,1(supp(p€_p)) < 00 since
2 2 .
lg(@)|” = lg(¥)l ‘ = 19(x) = gWlllg@)| + 19 < 2/l9lleo supp(or —py) LPO 7 = yll g (5.45)
for all x,y € supp(p® — p). Hence,
2 _ 20 ¢
91z 2(pe—py = <Ig| p° - p>M(X)
< Lip(lg|*)e eq. (B.49)
2
< QHQHCUJ(X)E‘ eq. (B.40)
for all g € C%1(supp(p® — p)). Q.E.D.
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Proposition 5.5. We have
0D (uf 1) < 0 (5.46)

when

HKVt - in?(pE) > 25Hf - K:U/THio,l(Supp(p,pa) + Hf - K/”Hip@)' (547)

Proof. f — Ku' is a sum of two Lipschitz functions on supp(p — p°); f by assumption and Ku' by
proposition [Tl Thus, f — Ku' is Lipschitz on supp(p — p°). From lemma [5.2.4] we obtain that

2 2 2
I/ - KMTHLQ(;)E) < 2| f - K'U/THCOJ(SUpp(ppr) +|f = KMTHLQ(p)' (5.48)
Hence,
2
DU (', 1) < Hf - KMTHLz(pE)HKVt = fllp2gpey = 1ve = fllz2pe) eq. (B.13)
2 2 2
S \/25||f - K/’[’THCle(supp(ppr) + Hf - K/’[/THLZ(p)HKVt - f||L2(p5) - ||Kyt - fHLZ(pE)' €q. (m)
Clearly, this is strictly negative when eq. (.47 is satisfied. Q.E.D.

When comparing eq. (526) with eq. (£I0), we see that the sampling bias adds an additive term based on
€. This is like the noisy case, but unlike when the sampling bias was given in terms of the Radon—Nikodym
derivative.

Proposition 5.6. If ut and v' satisfy the source condition through ¢ € L?(p) and ¢ € L?(p®) respectively,
then

1 t
D?(MTa Vt) < _HqﬁHi?(p) + 5§Hf - K:uTHio,l(

— 2t supp(p—p*®))

c [t [T " ) (5.49)
2
* t /0 /0 [ Kvr — KVSHCU,I(Supp(p*pE))deT + gHKVT - KNTHLQ(,JE)

for almost every t > 0.

Proof. Recall from the proof of proposition that f — Ku' € C%!(supp(p — p°)). Equation (5.48)) can
be rewritten as

2 2
Hf o K'LLTHLQ(pffp) S 2€Hf o K'LLTHCOvl(supp(ppr)' (550)

Similarly, Kv, — Kvs € C%!(supp(p — p°)) by proposition 1.2. Hence,

2 2
|Kv, — Kus||L2(p57P) < 2| Kv, — KZ/SHCOJ(Spr(pipE). (5.51)
Bounding eq. (5I4) using eq. (550) and eq. (B5]) gives the sought for expression. Q.E.D.
Note that when we take the limit of ¢ — 0 of eq. (B.28]), then we get
L2
DY (T, ) < gnéf’”m(p)' (5.52)

This shows that the bound for the Bregman distance in proposition[5.6] like the bound in proposition[5.2]
is tight in €.

6 Parameter space discretisation

One issue with the inverse scale space of eq. (L2)) is that p; is defined on Q. To ensure that p; € 9J(u:) we
need to have full knowledge of p;. This cannot be implemented. Hence, §2 needs to be discretized. In this
section, we study a particular discretization based on the Voronoi tessellation. In section 6.1l we show,
for a given sequence of Voronoi tessellations with mild assumptions, that the inverse scale space flow on
these tessellations converges to the full flow for N — oco. In section [6.2] we show the rate of convergence
for the flow with fixed IV to the optimal solution. Combined, these sections prove theorem
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Given a set w™ C Q with ‘wN’ = N, a Voronoi tessellation divides € into N subsets

Qg{wEQ‘VmG{l,...,N}: |wwﬁ|§|wwﬁ|} (6.1)
such that
N
o=Jal. (6.2)
n=1

We consider sequences of sets {w™V}_, with w™ C Q, |w N and limy_,o max, diam(QY) = 0.
For this section, we will keep referring to the solution over €2 with p and p whilst we will refer to the
solution over w® with v and g. With vf we denote a minimizer of R; with J(vT) < oo over the measures
supported on w?. We will make use of the Lagrangian

N| =

F 2 M(Q) = [0,00), p= J(p) + AR p (1) (6.3)
of eq. (23) and its restriction to w’v

F su C wh
Fagi = { I pp(u? C (6.4)
oo  otherwise

in the proofs. We will also assume that 2 is compact.

Theorem 6.1. The sequence {Fn}3_, satisfies

r
Fn = F (6.5)
and its sequence of minimizers converges in weak™ to the minimizer of F. Moreover,

J(vT)

| Kvy — f”iz(p) < 2||K;LJr - fH2LQ(p) + 2Lip(0)2(mgxdiam(Qg))QHuT||2 + QT.

for almost every t > 0.

6.1 Convergence of the discrete flow to the full flow

Both the discrete flow and full flow are well-defined flows, so what remains to show is that the solutions
to the discrete flow for increasing N converge to the solution for the full flow. To prove this, we will show
that the Lagrangian of the discrete flow Fiy I'-converges to the Lagrangian of the full flow F' and that the
associated minimizers converge in weak*. The requirements for this to hold is that Fy satisfies the lim inf
property, that there exists a I'-realizing sequence and that the family (Fy)y is equicoercive [Braides,
2006]. These three properties are the requirements for the fundamental theorem of I'-convergence. The
three propositions at the end of this subsection show that these hold. These propositions rely on some
properties of F' that carry over to Fiy. We will prove those first.

Lemma 6.1.1. F is proper, convez, weak™ lower semi-continuous and coercive.

Proof. F is proper, since 0 € dom(F).

Since V' is continuous, J is convex. Since K is a bounded, linear (and thus continuous) operator and the
square of the L?(p) norm is convex, Ry is convex. Since F' is a sum of two convex functions, F is convex.

Let (un) be a sequence of measures and p,, p € M(R2), such that u, LN . Then for all ¢ € L?(p)
HILH;O <Kﬂn|¢>L2(p) = nlggo <Lp¢|ﬂn>M(Q) = <Lp¢|N>M(Q) = <K,U|¢>L2(p) : (6.7)

This shows that K, L—(p)> K. Since

1 2
w = §|\w*f||L2(p) (6.8)
is continuous and convex, it is sequentially weak lower-semicontinuous. The combination implies that

Ry is sequentially weak* lower-semicontinuous. Since J is continuous, it is weak™ lower-semicontinuous.
This implies that F' is weak* lower-semicontinuous.
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F is coercive if and only if
() = oo. (6.9)

11m
el pg oy =00

For measures p ¢ N(K) outside the kernel of K we have that Ry(u) — 00 as [[u]| vy — oo. Since
J is non-negative, F' will grow without bound for those measures too. What remains is the measures
pw € N(K) inside the kernel of K. For these measures R(u) is constant, but by the conditions on V
imply that J will grow without bound. Hence, F' is coercive. Q.E.D.

Now, we can prove the three properties needed for the sequence of Fy’s.

Proposition 6.1 (Liminf property). For all u € M(Q) and every sequence (u,) such that py, v, i, we
have
liminf F}, (un) > F(w). (6.10)

[, —> OO
Proof. From construction of F,, it follows that
Fp(p) > F(p). (6.11)

Hence, combined with the lower semi-continuity of F' proven in lemma [6.1.1l we obtain

liminf F, (py,) > liminf F'(p,) > F(u). (6.12)

Hn—>00 Hm —>00

Q.E.D.

Proposition 6.2 (I-realizing sequence). Let p € M(Q) and define a sequence of measures uny € M(Q)
by

N
pn =y (N )d,. (6.13)
n=1
We have un LN woas well as
A Fy () = F(p). (6.14)

Proof. Recall that M(Q) is dual to C(Q), so the weak* convergence is defined in terms of g € C().
Since € is compact, g is absolutely continuous. Recall that this implies that

Ve > 036 > 0Y(a,b), (¢,d) € Q : ||(a,b) — (¢,d)|| <6 = |g(a,b) — g(c,d)| < e. (6.15)
Since the diameter of the Voronoi cells vanishes as IV goes to inﬁnity, there must be an N such that for

all N > N and n € {1,..., N} we have that [|(a,b) — (al,bY)|| < 6 for all (a,b) € Q. Hence, for all
g€eC(Q)and alle >0

]}grlw’/glg(a,b)d(u—uN)(a,b)’ Jim /Q ( Zu ) a,b)

n o 0n ) ()

Mz

:I\}i—l;noo/g (a,b)du(a,b) — >
N

:A}i_r>noo/9 (a,b)dp(a,b) — ZI/N (aN,bN)dpu(a, b)
N

:A}EHOOZ/ g(a,b)du(a,b) — Z/ (aN,bN)dpu(a, b)

~ Jim Z A | (ata.0) — o0 )t

_;@mz[zN\rgab Y 00 (0, )

A
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N
< 1 d , 0
Jm > [ el
= EHNHM(Q)
Since ¢ was arbitrary, we must have that
lim [ g(a,b)d(p — pn)(a,b) = 0. (6.16)

N —o0 Q

This shows that puy — u, and by construction of puy we have Fy(ux) = F(uy). Furthermore, we
showed in lemma [6.1.1] that F' was weak® lower semi-continuous. If fact, by similar arguments, it is
sequentially weak™ continuous. Hence, it follows that

lim Fy(pn) = lim F(un)= F(u). (6.17)
N—o0 N—o0
Q.E.D.
Proposition 6.3 (Equicoercivity). The family (Fn)n is equicoercive.

Proof. The family (Fn)y is equicoercive if and only if every member of the family is coercive. In
lemma [G.1.1] it was proven that F' is coercive. Hence, by construction of Fiy

lim  Fy(p) > lim  F(u) = oc. (6.18)

N(K) Z
1]l jg 2y =00 llll ps () =00

This means that Fj is coercive. Since N was arbitrary, it holds for all members F of the family
(Fn)N- Q.E.D.

We have now shown that the requirements for the fundamental theorem of I'-convergence hold, which

implies that Fiy Ly F and that the sequence of minimizers of Fjy converges in weak™ to the minimizer of
F.

6.2 Convergence error for the discrete flow

In the previous section, we showed that the discrete flow converges to the full flow. In this section, we
will fix N and show the convergence rates of the discrete flow to the optimal solution. We will first show
the generic bound, also shown in theorem [6.Il Afterward, we will look at a special case.

Observe that the finite w!V satisfies the required properties for a proper inverse scale space flow. The
following proposition shows the generic bound.

Proposition 6.4. We have

J(vT)

|Kve = 22 < 20Kt = £, +2

(6.19)
2 . ;
21| (e i (@) Lipl0)? | maax(L o]} dpo)
n x
for almost every t > 0.
Proof. From proposition B3] it follows that
2 2 J(VT)
1w = fllgag) < 1KV = 2, + 2= (6.20)
Since v is a minimizer of Ry over w™, we have for the measure
N
iy =3 i (@) (6.21)
n=1
that
||[(V'r - f||L2(p) < ”KMN - f||L2(p) < ||K,UN - KMT||L2(p) + ||K‘L/,T - f”Lz(p) (622)
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and thus by Young’s inequality for products with p = ¢ = 2

HKVT - f||2L2(p) < 2||Kpn - K“TH;(,J) + QHK“T - fH2L2(p)' (6.23)

We observe that by a similar argument as in the proof of proposition that

2

| otame 4 by~ i)a,0)| doto)

10y = K[y = |
</ ( i . letama 4~ @ -+ ) .0 ot
</ (i ., Binlars )~ (@ + ) 0.0 ) e

/(Z/ Lip(o (Ha—aNHH:EH—l—\b—bN\)d\/ﬂ\ab)zdp(x)
/maxl 0 (Z/ Lip(o <||aaNH+|b bN\)d\uT|ab>2dp(z)
~ Lip(o)? | max(, ||z||>2<2 / X diam(ﬂmdw(a,b))zdpcc)

< H,u HM(Q) maxd1am(QN)) Lip(c / max(1, ||z||)%dp(z)

Substituting this into eq. (623 and the resulting expression into eq. (620) gives eq. (619). Q.E.D.

In Devroye et al., 2015 it was shown that a Voronoi cell’s radius decreases with a rate of O(N~/?) when
points the points in w? are i.i.d. sampled from an absolutely continuous probability measure over 2. We
can use the direct approximation theorem of Barron spaces to achieve a better rate [E & Wojtowytsch,
2020, Theorem 3.8].

Proposition 6.5. Let N € N. Denote with My the set of all measures pn of Natoms that satisfy the
bounds

J(uh)?
N

2 .
1 pn = K[ 2,y < Lip(o)® /X max(1 + |[])?dp(x), (6.24)

and choose w? such that My is non-empty. Then,

) 2 J(vt)
150 = 132, £3||1’<u“f||m<p>+2 i
S . (6.25)
376 Lip()* [ max(1, el Pdp(o) +3 it (|0 = K,

Proof. Ku' € B, so by [E et al., 2021, theorem 4] there exists a suitable choice for w™. Let uy € M;.
Observe that

LA

f ‘ ’ L2(p) ; proposition B3]

[ Kve — fHL2(p) ||KV

Jt
S3HKVT7K,UNH§2(/))+3HK/LT7KMNH§‘2 +3HK,UT7inz(p)+2¥ A ineq.,Young’s
J(u
<8Rt~ K [ + 378 Lin(o)? [ max(r, el Pap(a)
J(t
+3][Ku" = £7a, (t 5 eq. @)
Taking the infimum over pny € My gives eq. (G.25). Q.E.D.
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7 Discussion

In this work, we have studied the convergence and error analysis of finding the best measure p such that
the Barron function Ky is close to f using the inverse scale space flow. After having established the
existence and regularity of the solution, we considered the ideal, noisy, biased, and discretized cases. For
each of these cases, we analysed the evolution of the Bregman divergence with respect to the optimal
solution DP¢(uf, ;) and the L? loss R ().

In the ideal case, we got monotonic and linear evolution to the optimal solution. In the noisy case, we
still got monotonic and linear evolution to the optimal solution but only up to an error level determined
by the noise level §. These results agree with the known results for inverse scale spaces.

In the novel case of biased sampling, DPt(u', 1) < O(1 + % +t) with the suppressed factors in the big O
notation depending on . When we work with noisy measurements, Dt (u', ;) has a similar upper bound
but depending on §. In that setting, the smallest upper bound for DPt (i, ;) is attained for ¢(6) = O(671).

When dealing with biased sampling, this smallest upper bound is attained for t(e) = O(\/liv_:;;) and
Vite

t(e) = O(T) for a Radon Nikodym and a Wasserstein perturbation respectfully. However, whilst in
many cases it is straightforward to provide an estimate for 4, it is not the case for e.

A second issue with the upper bounds for DP¢(uf, ;) is that we typically do not know f, ¢, uf, vf or
p. What we do know is Kv; on supp(p®). This means the bound in proposition has more terms that
can be explicitly computed than the bounds in proposition [5.2] proposition [5.4] or proposition That
makes proposition arguably the most useful proposition.

When the parameter space 2 is discretized, we have shown that we still have a proper inverse scale space
flow. In this setting, we get an additional additive factor depending on N in convergence. When we
don’t make any additional assumptions on w'¥, this additional factor is of the form O(N~'/%). This 1/d
factor shows that the discretization method suffers from the curse of dimensionality, meaning that the
method performs poorly when working with high dimension. Although we show that an O(N~1/2) can
be attained in theory, it is unclear how to find the required N points without solving a different sparse
minimization problem first.
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