2,510 research outputs found

    Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures

    Full text link
    The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy T_K of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and T_K obtained from thermodynamic measurements. In contrast, the temperature scale T_v at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2

    Different tumours induced by benzo(a)pyrene and its 7,8-dihydrodiol injected into adult mouse salivary gland.

    Get PDF
    A comparison has been made between the carcinogenic activities of benzo(a)pyrene and the proposed proximate carcinogen, benzo(a)pyrene 7,8-dihydrodiol, in the adult C57BL mouse submandibular salivary gland. In preliminary studies using a range of doses, the dihydrodiol was slightly less active than the parent hydrocarbon in this system. There was a difference in the type of tumour induced by the 2 compounds. Benzo(a)pyrene induced tumours of the salivary glands at the site of injection, whereas the dihydrodiol induced malignant lymphosarcomas, particularly of the thymus, which were often metastatic to other orgnas. Possible reasons for the different sites of action of the 2 compounds are discussed

    Paramagnon dispersion in β\beta-FeSe observed by Fe LL-edge resonant inelastic x-ray scattering

    Full text link
    We report an Fe LL-edge resonant inelastic x-ray scattering (RIXS) study of the unusual superconductor β\beta-FeSe. The high energy resolution of this RIXS experiment (≈ \approx\,55 \,meV FWHM) made it possible to resolve low-energy excitations of the Fe 3d3d manifold. These include a broad peak which shows dispersive trends between 100-200 \,meV along the (π,0)(\pi,0) and (π,π)(\pi,\pi) directions of the one-Fe square reciprocal lattice, and which can be attributed to paramagnon excitations. The multi-band valence state of FeSe is among the most metallic in which such excitations have been discerned by soft x-ray RIXS

    High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2

    Get PDF
    The magnetic properties of rare earth compounds are usually well captured by assuming a fully localized f shell and only considering the Hund's rule ground state multiplet split by a crystal electrical field (CEF). Currently, the standard technique for probing CEF excitations in lanthanides is inelastic neutron scattering. Here we show that with the recent leap in energy resolution, resonant inelastic soft X-ray scattering has become a serious alternative for looking at CEF excitations with some distinct advantages compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system that has been intensely studied for more than two decades now but for which no consensus has been reached yet as to its CEF scheme. We used two new features that have only become available very recently in RIXS, high energy resolution of about 30 meV as well as polarization analysis in the scattered beam, to find a unique CEF description for CeRh2Si2. The result agrees well with previous INS and magnetic susceptibility measurements. Due to its strong resonant character, RIXS is applicable to very small samples, presents very high cross sections for all lanthanides, and further benefits from the very weak coupling to phonon excitation. The rapid progress in energy resolution of RIXS spectrometers is making this technique increasingly attractive for the investigation of the CEF scheme in lanthanides

    Hole-depletion of ladders in Sr14_{14}Cu24_{24}O41_{41} induced by correlation effects

    Full text link
    The hole distribution in Sr14_{14}Cu24_{24}O41_{41} is studied by low temperature polarization dependent O K Near-Edge X-ray Absorption Fine Structure measurements and state of the art electronic structure calculations that include core-hole and correlation effects in a mean-field approach. Contrary to all previous analysis, based on semi-empirical models, we show that correlations and antiferromagnetic ordering favor the strong chain hole-attraction. For the remaining small number of holes accommodated on ladders, leg-sites are preferred to rung-sites. The small hole affinity of rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of (La,Y,Sr,Ca)14_{14}Cu24_{24}O41_{41}Comment: 6 pages, 8 figure

    An evaluation of Bradfordizing effects

    Get PDF
    The purpose of this paper is to apply and evaluate the bibliometric method Bradfordizing for information retrieval (IR) experiments. Bradfordizing is used for generating core document sets for subject-specific questions and to reorder result sets from distributed searches. The method will be applied and tested in a controlled scenario of scientific literature databases from social and political sciences, economics, psychology and medical science (SOLIS, SoLit, USB Köln Opac, CSA Sociological Abstracts, World Affairs Online, Psyndex and Medline) and 164 standardized topics. An evaluation of the method and its effects is carried out in two laboratory-based information retrieval experiments (CLEF and KoMoHe) using a controlled document corpus and human relevance assessments. The results show that Bradfordizing is a very robust method for re-ranking the main document types (journal articles and monographs) in today’s digital libraries (DL). The IR tests show that relevance distributions after re-ranking improve at a significant level if articles in the core are compared with articles in the succeeding zones. The items in the core are significantly more often assessed as relevant, than items in zone 2 (z2) or zone 3 (z3). The improvements between the zones are statistically significant based on the Wilcoxon signed-rank test and the paired T-Test

    Ising magnetism and ferroelectricity in Ca3_3CoMnO6_6

    Full text link
    The origin of both the Ising chain magnetism and ferroelectricity in Ca3_3CoMnO6_6 is studied by abab initioinitio electronic structure calculations and x-ray absorption spectroscopy. We find that Ca3_3CoMnO6_6 has the alternate trigonal prismatic Co2+^{2+} and octahedral Mn4+^{4+} sites in the spin chain. Both the Co2+^{2+} and Mn4+^{4+} are in the high spin state. In addition, the Co2+^{2+} has a huge orbital moment of 1.7 μB\mu_B which is responsible for the significant Ising magnetism. The centrosymmetric crystal structure known so far is calculated to be unstable with respect to exchange striction in the experimentally observed ↑↑↓↓\uparrow\uparrow\downarrow\downarrow antiferromagnetic structure for the Ising chain. The calculated inequivalence of the Co-Mn distances accounts for the ferroelectricity.Comment: 4 pages, 3 figures, PRL in press (changes made upon referees comments

    Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices

    Full text link
    The magnetic and electronic modifications induced at the interfaces in (SrMnO3_{3})n_{n}/(LaMnO3_{3})2n_{2n} superlattices have been investigated by linear and circular magnetic dichroism in the Mn L2,3_{2,3} x-ray absorption spectra. Together with theoretical calculations, our data demonstrate that the charge redistribution across interfaces favors in-plane ferromagnetic (FM) order and eg(x2−y2)e_{g}(x^{2}-y^{2}) orbital occupation, in agreement with the average strain. Far from interfaces, inside LaMnO3_3, electron localization and local strain favor antiferromagnetism (AFM) and eg(3z2−r2)e_{g}(3z^{2}-r^{2}) orbital occupation. For n=1n=1 the high density of interfacial planes ultimately leads to dominant FM order forcing the residual AFM phase to be in-plane too, while for n≥5n \geq 5 the FM layers are separated by AFM regions having out-of-plane spin orientation.Comment: accepted for publication as a Rapid Communication in Physical Review
    • …
    corecore