34 research outputs found

    Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica

    Full text link
    The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported forhuman cathepsin K. The 1.4-Å three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and Kprovided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc

    Computational Identification of Uncharacterized Cruzain Binding Sites

    Get PDF
    Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention

    Two approaches to discovering and developing new drugs for Chagas disease

    No full text
    This review will focus on two general approaches carried out at the Sandler Center, University of California, San Francisco, to address the challenge of developing new drugs for the treatment of Chagas disease. The first approach is target-based drug discovery, and two specific targets, cytochrome P450 CYP51 and cruzain (aka cruzipain), are discussed. A "proof of concept" molecule, the vinyl sulfone inhibitor K777, is now a clinical candidate. The preclinical assessment compliance for filing as an Investigational New Drug with the United States Food and Drug Administration (FDA) is presented, and an outline of potential clinical trials is given. The second approach to identifying new drug leads is parasite phenotypic screens in culture. The development of an assay allowing high throughput screening of Trypanosoma cruzi amastigotes in skeletal muscle cells is presented. This screen has the advantage of not requiring specific strains of parasites, so it could be used with field isolates, drug resistant strains or laboratory strains. It is optimized for robotic liquid handling and has been validated through a screen of a library of FDA-approved drugs identifying 65 hits
    corecore