712 research outputs found

    49Cr: Towards full spectroscopy up to 4 MeV

    Full text link
    The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme has been greatly extended at low excitation energy and several new lifetimes have been determined by means of the Doppler Shift Attenuation Method. Shell model calculations in the full pf configuration space reproduce well negative-parity levels. Satisfactory agreement is obtained for positive parity levels by extending the configuration space to include a nucleon-hole either in the 1d3/2 or in the 2s1/2 orbitals. A nearly one-to-one correspondence is found between experimental and theoretical levels up to an excitation energy of 4 MeV. Experimental data and shell model calculations are interpreted in terms of the Nilsson diagram and the particle-rotor model, showing the strongly coupled nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed for the levels observed in this experiment. As a by-result it is shown that the values of the experimental magnetic moments in 1f7/2 nuclei are well reproduced without quenching the nucleon g-factors.Comment: 13 pages, 8 figure

    Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes

    Get PDF
    Aim of the research was to study the influence of grape (Vitis vinifera) pomace powder, a by-product of wine manufacturing, on chemical composition, nutritional properties and physical characteristics of cakes prepared replacing bread wheat flour with 4%, 6%, 8% and 10% grape pomace powder. The addition of growing quantities of grape pomace powder gradually increased ash, lipid, proteins, fibres, free phenolics, anthocyanins and total polyphenol content as well as antioxidant capacity (DPPH, FRAP), while decreased moisture and \u440\u41d. The main phenolics provided by grape pomace were catechin, gallic acid, quercitin, protocatechuic acid, kaempferol and apigenin. The phenolic acids and flavonoids content increased from 4.1\u202fmg/kg DM (control) to 26.4\u201360.9\u202fmg/kg DM (cake with 4%\u201310% grape pomace powder). The colour coordinates L* and a* diminished, while b* augmented. The cake containing 4% grape pomace powder showed the best sensory quality. The addition of grape pomace powder significantly improved the content in free phenolics, highly bioavailable, that are scarce in bread wheat, and thus the nutritional value of cakes without penalising their technological and sensorial attributes. Therefore, grape pomace powder utilisation will give foods with nutritionally enhanced properties; additionally, its utilisation will alleviate the ecological problems connected to its disposal

    Antioxidant properties and heat damage of water biscuits enriched with sprouted wheat and barley

    Get PDF
    The nutritional value of cereal kernels is markedly improved by the germination process. Aim of this study was to evaluate protein, ash, sugars, heat damage (furosine, hydroxymethylfurfural, glucosylisomaltol), carotenoids, tocols, phenolics and antioxidant capacity (FRAP, ABTS, DPPH, reducing power, superoxide anion, beta-carotene bleaching tests) of water biscuits enriched with increasing quantities (0, 5, 10 and 20%) of sprouted bread wheat or barley. The wholemeals from sprouted wheat and barley showed high concentrations of total carotenoids (82.6 and 119.7 mg/kg, respectively), tocols (53.4 and 88.2 mg/kg), conjugated (368.0 and 564.2 mg/kg) and bound (1811.6 and 3022.0 mg/kg) phenolics. Therefore, the enriched water biscuits had higher carotenoids, tocols and phenolics content, heat damage and antioxidant capacity than the controls. The greatest increase was recorded in barley-enriched samples. The addition of 15%-20% sprouted wheat or 5%-10% sprouted barley improved the nutritional quality of water biscuits while limiting heat damage

    Backbending in Dy isotopes within the Projected Shell Model

    Get PDF
    A systematic study of the yrast band in 154-164 Dy isotopes using the Projected Shell Model is presented. It is shown that, in the context of the present model, enlarging the mean field deformation by about 20 % allows a very good description of the spectrum of yrast band in these isotopes. The dependence of the B(E2) values on angular momentum is also better described when larger deformations are used. The observed oscillation of g-factors at low spin states remains an open question for this model.Comment: 17 pages, 7 figures, submitted to Phys. Rev.

    On the discrete spectrum of spin-orbit Hamiltonians with singular interactions

    Full text link
    We give a variational proof of the existence of infinitely many bound states below the continuous spectrum for spin-orbit Hamiltonians (including the Rashba and Dresselhaus cases) perturbed by measure potentials thus extending the results of J.Bruening, V.Geyler, K.Pankrashkin: J. Phys. A 40 (2007) F113--F117.Comment: 10 pages; to appear in Russian Journal of Mathematical Physics (memorial volume in honor of Vladimir Geyler). Results improved in this versio

    Electromagnetic transitions and structure in the Z = N nucleus 46 V

    Get PDF
    The nucleus 46V has been studied in the reaction 24Mg(28Si,apn) 46V at 115 MeV beam energy, using both Au and Pb backed targets. Lifetimes were obtained for 14 levels with DSAM analysis. Experimental B (E2) reduced transition probabilities are well reproduced by the large scale shell model. The observed levels could be organizied in bands with a rather good K value.DGES PB96-5

    Correlating qrt-pcr, dpcr and viral titration for the identification and quantification of sars-cov-2: A new approach for infection management

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China, in late 2019 and is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) represents the gold standard for diagnostic assays even if it cannot precisely quantify viral RNA copies. Thus, we decided to compare qRT-PCR with digital polymerase chain reaction (dPCR), which is able to give an accurate number of RNA copies that can be found in a specimen. However, the aforementioned methods are not capable to discriminate if the detected RNA is infectious or not. For this purpose, it is necessary to perform an endpoint titration on cell cultures, which is largely used in the research field and provides a tissue culture infecting dose per mL (TCID50/mL) value. Both research and diagnostics call for a model that allows the comparison between the results obtained employing different analytical methods. The aim of this study is to define a comparison among two qRT-PCR protocols (one with preliminary RNA extraction and purification and an extraction-free qRT-PCR), a dPCR and a titration on cell cultures. The resulting correlations yield a faithful estimation of the total number of RNA copies and of the infectious viral burden from a Ct value obtained with diagnostic routine tests. All these estimations take into consideration methodological errors linked to the qRT-PCR, dPCR and titration assays

    Inhibition of C5aR1 as a promising approach to treat taxane-induced neuropathy

    Get PDF
    : Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several antitumor agents resulting in progressive and often irreversible damage of peripheral nerves. In addition to their known anticancer effects, taxanes, including paclitaxel, can also induce peripheral neuropathy by activating microglia and astrocytes, which release pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and chemokine (C-C motif) ligand 2 (CCL-2). All these events contribute to the maintenance of neuropathic or inflammatory response. Complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling was very recently shown to play a crucial role in paclitaxel-induced peripheral neuropathy. Our recent findings highlighted that taxanes have the previously unreported property of binding and activating C5aR1, and that C5aR1 inhibition by DF3966A is effective in preventing paclitaxel-induced peripheral neuropathy (PIPN) in animal models. Here, we investigated if C5aR1 inhibition maintains efficacy in reducing PIPN in a therapeutic setting. Furthermore, we characterized the role of C5aR1 activation by paclitaxel and the CIPN-associated activation of nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. Our results clearly show that administration of the C5aR1 inhibitor strongly reduced cold and mechanical allodynia in mice when given both during the onset of PIPN and when neuropathy is well established. C5aR1 activation by paclitaxel was found to be a key event in the induction of inflammatory factors in spinal cord, such as TNF-α, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP). In addition, C5aR1 inhibition significantly mitigated paclitaxel-induced inflammation and inflammasome activation by reducing IL-1β and NLRP3 expression at both sciatic and dorsal root ganglia level, confirming the involvement of inflammasome in PIPN. Moreover, paclitaxel-induced upregulation of C5aR1 was significantly reduced by DF3966A treatment in central nervous system. Lastly, the antinociceptive effect of C5aR1 inhibition was confirmed in an in vitro model of sensory neurons in which we focused on receptor channels usually activated upon neuropathy. In conclusion, C5aR1 inhibition is proposed as a therapeutic option with the potential to exert long-term protective effect on PIPN-associated neuropathic pain and inflammation
    • …
    corecore