1,128 research outputs found

    Mitochondrial dynamics and quality control in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD

    Targeting the proteostasis network in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models

    Perfeccionismo no transtorno obsessivo-compulsivo e nos transtornos alimentares

    Get PDF
    OBJETIVO: Este estudo tem dois objetivos principais. Primeiro, avaliar as dimensões do perfeccionismo no transtorno obsessivo-compulsivo e nos transtornos alimentares em comparação com duas amostras controle: psiquiátrica (depressão/ansiedade) e não clínica. Segundo, avaliar se o perfeccionismo é um traço de personalidade especificamente relacionado com estas diferentes condições clínicas. MÉTODO: 39 pacientes com transtorno obsessivo-compulsivo, 24 com transtornos alimentares, 65 com um diagnóstico de depressão e/ou ansiedade (todos estes pacientes encontravam-se em regime de ambulatório) e 70 controles não clínicos completaram a versão portuguesa da Multidimensional Perfectionism Scale. RESULTADOS: Comparativamente à amostra não clínica, todas as amostras clínicas apresentaram níveis significativamente mais elevados na Multidimensional Perfectionism Scale total, no Perfeccionismo Auto-Orientado e no Perfeccionismo-Socialmente-Prescrito. Não houve diferenças estatisticamente significativas no Perfeccionismo-Auto-Orientado e na Multidimensional Perfectionism Scale total nas três amostras clínicas. No entanto, a amostra com transtornos alimentares apresentou níveis significativamente mais elevados de Perfeccionismo-Socialmente-Prescrito, comparativamente à transtornos alimentares e à amostra psiquiátrica (depressão/ansiedade). CONCLUSÃO: O perfeccionismo revelou estar associado a uma grande variedade de condições psicopatológicas. Contudo, as diferenças encontradas entre a amostra de transtornos alimentares, de transtorno obsessivo-compulsivo e a psiquiátrica no Perfeccionismo-Socialmente-Prescrito necessitam de investigação subsequente no sentido de clarificar a especificidade desta dimensão com os transtornos alimentares

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs

    Long-Term Smart Grid Planning Under Uncertainty Considering Reliability Indexes

    Get PDF
    The electricity sector is fast moving towards a new era of clean generation devices dispersed along the network. On one hand, this will largely contribute to achieve the multi-national environment goals agreed via political means. On the other hand, network operators face new complexities and challenges regarding network planning due to the large uncertainties associated with renewable generation and electric vehicles integration. In addition, due to new technologies such as combined heat and power (CHP), the district heat demand is considered in the long-term planning problem. The 13-bus medium voltage network is evaluated considering the possibility of CHP units but also without. Results demonstrate that CHP, together with heat-only boiler units, can supply the district heat demand and contribute to network reliability. They can also reduce the expected energy not supplied and the power losses cost, avoiding the need to invest in new power lines for the considered lifetime project.This work has received funding from the EU's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013. Bruno Canizes is supported by FCT Funds through SFRH/BD/110678/2015 PhD scholarship and M. Ali Fotouhi Ghazvini is supported by FCT Funds through SFRH/BD/94688/2013 PhD scholarship.info:eu-repo/semantics/publishedVersio

    Cleanup of industrial effluents containing heavy metals : a new opportunity of valorising the biomass produced by brewing industry

    Get PDF
    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed

    Siderophore production by Bacillus megaterium : effect of growth-phase and cultural conditions

    Get PDF
    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g−1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g−1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g−1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.The authors thank Porto University/Totta Bank for their financial support through the project "Microbiological production of chelating agents" (Ref: 180). The authors also thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT

    Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy

    Get PDF
    Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2

    Molecular characterization of beta-tubulin from Phakopsora pachyrhizi, the causal agent of Asian soybean rust

    Get PDF
    β-tubulins are structural components of microtubules and the targets of benzimidazole fungicides used to control many diseases of agricultural importance. Intron polymorphisms in the intron-rich genes of these proteins have been used in phylogeographic investigations of phytopathogenic fungi. In this work, we sequenced 2764 nucleotides of the β-tubulin gene (Pp tubB) in samples of Phakopsora pachyrhizi collected from seven soybean fields in Brazil. Pp tubB contained an open reading frame of 1341 nucleotides, including nine exons and eight introns. Exon length varied from 14 to 880 nucleotides, whereas intron length varied from 76 to 102 nucleotides. The presence of only four polymorphic sites limited the usefulness of Pp tubB for phylogeographic studies in P. pachyrhizi. The gene structures of Pp tubB and orthologous β-tubulin genes of Melampsora lini and Uromyces viciae-fabae were highly conserved. The amino acid substitutions in β-tubulin proteins associated with the onset of benzimidazole resistance in model organisms, especially at His 6 , Glu 198 and Phe 200 , were absent from the predicted sequence of the P. pachyrhizi β-tubulin protein
    corecore