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Abstract   The electricity sector is fast moving towards a new era of clean genera-
tion devices dispersed along the network. On one hand, this will largely contribute 
to achieve the multi-national environment goals agreed via political means. On an-
other hand, network operators face new complexities and challenges regarding net-
work planning due to large uncertainties associated to renewable generation and 
electric vehicles integration. In addition, due to new technologies such as combined 
heat and power (CHP), the district heat demand is considered in the long-term plan-
ning problem. The 13-bus medium voltage network is evaluated considering the 
possibility of CHP units but also without. Results demonstrate that CHP can supply 
the district heat demand also contributing to network reliability reducing expected 
energy supplied and power losses avoiding the need to invest in new power lines 
for the considered lifetime project. 
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1. Introduction 

The electricity sector is extremely important to the society. The energy 
needs are increasing and are satisfied by, mostly, non-renewable energy sources 
like coal or natural gas. However, this energy resources are scarce and can bring 
negative consequences to environment. In this way, there is a necessity to find 
new alternatives to, at least, reduce their use. In fact, environmental and techno-
economic factors have motivated the widespread adoption of Distributed Gen-
eration (DG) technologies in distribution networks. [1]. Therefore, the portion 
of DG based generated electricity is increasing as a consequence and will play 
an important role in distribution network systems.  Nevertheless, DG based on 
renewable sources such as solar and wind and therefore carry an inherent vari-
ability [2]. 

Stochastic expansion model for the transmission problem have been pro-
posed in [3]–[5] suggesting superior results compared with deterministic ap-
proaches when likely realizations are considered. Ref. [5] proposes a multiple 
resource expansion planning in smart grids. The two-stochastic model mini-
mizes the expected cost in the entire planning horizon and in the second stage 
the realization of the load and wind generation are found. The results reveal 
that the expansion plans depend on the uncertainty level of prospective wind 
generation, existing capacity and transmission capacity. A stochastic planning 
approach of distribution lines is presented in [6]. The work is based on Monte 
Carlo and optimization procedure to minimize the conductor profile of a power 
line and the transformer capacity. The net present value of the total average 
annual costs is evaluated for the planning period of 30 years. The stochastic 
approach is compared with the deterministic one, and the results reveal that the 
former is able to increase the net present value by 13%-25%. The work pre-
sented in [1] concerns a multi-year distributed generation investment planning.  
The stochastic model considers uncertainty on emission price, demand growth, 
and renewable generation. The results in the real network suggest that com-
pared to the naïve decisions, the stochastic model yields better and more robust 
decisions, namely amounting to more than 7%.  

Combined heat and power (CHP) planning has demonstrated value in pre-
vious works [7], [8]. By definition, CHP plants can produce heat and power 
simultaneous, saving the heat that would be wasted in electricity production 
while saving up to 30% compared to conventional condensing power plants. 
Rong and Lahdelma [7] refers that when steam or hot water is produced for an 
industrial plant or a residential area, power can be produced as a by-product. 
Excess heat from an electric power plant can be used for industrial purposes, 
or for heating space and water. CHP is applied in the district heating concept. 
A district heating scheme comprises a network of insulated pipes used to de-
liver heat, in the form of hot water or steam, from the generation point to the 
final user. A district heating plant is often a CHP plant but renewables sources, 
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for example biomass or solar energy, can be applied in district heating utilities, 
either completely or as a complement to traditional fossil fuels. 

Ref. [7] proposes efficient algorithms for combined heat and power pro-
duction planning in the electricity markets. Authors propose algorithms up to 
1860 times faster than CPLEX. Fast solutions of hourly CHP models is im-
portant, because long-term planning model requires solving several hourly 
models, and a large number of scenarios in stochastic approaches. In [8] multi-
ple energy infrastructures are addressed, namely for supplying electricity and 
gas loads. The planning model determines a least-cost network of transmission 
lines for both infrastructures. The authors demonstrate that the coupling multi-
ple energy hubs offers advantages and more flexible options between the inter-
connected systems. 

Taking into account current literature, in this work we propose to include 
heat and power demand in the grid expansion problem (new lines construction) 
in order to improve reliability indexes ensuring the radial topology of the dis-
tribution power network at minimum costs. Results indicate that it influences 
the grid planning and a joint planning is more indicated.  
The book chapter is organized as follows: After the brief introductory part, Sec-
tion 2 presents the modelling of system uncertainties; Section 3, the problem 
formulation; Section 4 the adopted case study; Section 5 the results and its dis-
cussion and Section 6 the conclusions. 

2. System Uncertainties 

 Grid expansion and planning problems can be modeled as deterministic or sto-
chastic problems. Usually, power system planners have considered this problem as 
a deterministic model, i.e. they considered parameters and inputs based on the as-
sumption that the data for the problem is known accurately. Nonetheless, the inputs 
of the expansion model must be estimated, such as the load demand and the renew-
ables penetration in the project lifespan, which is usually a decade at least. However, 
the projections are done with a large anticipation process depending on many factors 
and as a consequence they are not 100% accurate. The high deviations in the pro-
jections can have a relevant impact on the economic and technical aspects of daily 
grid operation. Therefore, the recent advances in expansion planning models are 
moving from deterministic to stochastic approaches in order to incorporate the un-
certainty in projections for future in the planning models [9]. 

In practice, it is possible to feed a deterministic model with several likely sce-
narios and run each optimization independently. However, advanced stochastic 
models can provide better alternatives [10]–[13]. In order to capture the underlying 
uncertainty in the problem data, a sophisticated energy planning model is developed 
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here. The ultimate goal is to find a solution that is feasible for all the supplied sce-
narios while minimizing or maximizing the objective function, e.g. the expected 
investment cost. 

The steps involving stochastic programming are typically developing the possi-
ble scenarios that represent the underlying uncertainty. This step is usually a cum-
bersome task where lot of possible scenarios might be generated. Therefore, a sec-
ond step is generally applied using scenario reduction techniques. The objective is 
to obtain a reduced set of likely scenarios that is feasible to be solved [14]. The third 
step involves developing a multi-scenario stochastic model to accommodate for the 
set of scenarios. 

In the proposed model, the DSO faces several sources of uncertainty for the pro-
jections in 30 years, namely the forecast errors of load demand, number of consum-
ers and the potential production of renewable units. These parameters are consid-
ered as potential uncertainties in this model [15]. In stochastic models, the optimal 
decisions are taken on the basis of future adaptability against a set of predicted sce-
narios [9]. The uncertainties related with these inputs are taken into account in the 
model and the planning problem is developed as a stochastic scenario-based opti-
mization model.  

In stochastic problems, where a set of scenarios needs to be handled, the main 
issue is to construct a set of realizations for the random variable. These scenarios 
should adequately represent the probabilistic characteristics of the data [16]. In this 
stochastic planning model, the initial set of scenarios is a large data set generated 
by the Monte Carlo Simulation (MCS) technique for representing the uncertainties 
which the DSO faces while solving the problem. The MCS parameters are the prob-
ability distribution functions of the forecast errors [17]. In order to include the fore-
cast error, an additional term which can be positive or negative is added to the fore-
casted profile (xforecasted) 

( ) ( ),                 .forecasted errorx s x x s s    

 
(1) 

The error term (xerror) is a zero-mean noise with standard deviation σ [16], [18]. 
Scenarios, which are projections for a specific date in future, are represented with 
x(s). The uncertainties of the forecast errors are modeled with the probability distri-
bution functions, which are usually obtained from the historical data [16]. In this 
model, the forecast errors for the uncertain inputs are all represented by normal dis-
tribution functions. 

Including all the generated scenarios in the planning problem results in a large-
scale optimization problem [16]. Generally, there should be a tradeoff between 
model accuracy and computation speed [15], [19]. In order to handle the computa-
tional tractability of the problem, the standard scenario reduction techniques devel-
oped in [20] are used. These scenario reduction algorithms exclude the scenarios 
with low probabilities and combines those that are close to each other in terms of 
statistic metrics [20]. They determine a scenario subset of the prescribed cardinality 
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and probability which is closest to the initial distribution in terms of a probability 
metric [17]. The key purpose of scenario reduction is to decrease the dimensions of 
the problem. The number of variables and equations are reduced after applying these 
algorithms. Accordingly, the solutions can be found more efficiently, without losing 
the main statistical characteristics of the initial dataset [21]. However, the potential 
cost of applying these approaches is introducing imprecision in the final plans [19]. 

The reduction algorithms proposed in [20] consists of algorithms with different 
computational performance and accuracy, namely fast backward method, fast back-
ward/forward method and fast backward/backward method.  The selection of the 
algorithms depends on the problem size and the expected solution accuracy [17], 
[20]. For example, the best computational performance with the worst accuracy can 
be provided by the fast backward method for large scenario tress. Furthermore, the 
forward method provides best accuracy and highest computational time. Thus, it is 
usually used where the size of reduced subset is small [17]. Theses algorithms are 
also incorporated in a General Algebraic Modeling System (GAMS) tool called 
SCENRED. SCENRED can be used to reduce the randomly generated scenarios 
[22] 

3. Problem Formulation 

The demand growing trend prompts an expansion of the distribution network. 
Thus, one of the proposals will be the construction of new lines, as it may influence 
the values of energy losses and energy not supplied. Costs related to the investment, 
network operation, satisfaction of all operational, physical and financial constraints 
leads to a planning problem. 

A distribution network planning problem can be of two types [23], [24] : static 
and multi-step. The first one considers that the construction / expansion of medium 
voltage (MV) distribution network can be carried out in a single step, usually asso-
ciated with small interventions. 

The multi-stage planning problem is related to a long term where the investments 
are carried out at different stages of planning. One of the way to solve this problem 
is considering only a single step with several static problems, where the next step 
starts with the solution of the previous step as input. 

The distribution network is spited into two subsystems: a primary one, supplied 
by MV, and a secondary one, supplied by low voltage LV. Carrying out the planning 
of these two subsystems simultaneous is very complex, so one of the solutions is to 
make the planning for the different subsystems separated. Thus, there is a decrease 
in complexity since the method no longer involves a high number of decision vari-
ables and also different voltage levels. 

The problem considered in this book chapter are related to a MV primary net-
work with several objectives. The objective function reflects the energy loss cost, 
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the expected energy not supplied cost and the cost related to the investments, which 
in this case will be in the construction of new lines.  

The main goal of this problem is to minimize the costs referred above subject to 
all technical network constraints. Indirectly the methods also minimize the number 
of switches to be operated, since there are constraints to deal with the network radi-
ality. With this, the problem must consider the following constraints: 

 Power balance - Kirchhoff's first law;  
 Generation limits; 
 Lines / cable thermal limits;  
 Only one direction of power flow can exist; 
 Radiality condition. 

a. Economic Evaluation 

The uncertainty associated with any project that involves a large amount of in-
vestment requires careful and detailed economic analysis. One of the difficulties 
faced during the economic evaluation of projects is that the cash flows (entry and 
exit of money) are staggered over time. Gallo [25] says that it's common sense that 
the money owned today is more valuable than the same amount after a few years 
(inflation rate decreases purchasing power). Thus, using a discount rate and con-
verting the financial amounts between different time periods it is possible to solve 
the above mentioned difficulty. 

Bruni et al. [26] mention that an economic evaluation of projects usually involves 
a set of parameters to establish the viability of the project. Thus, the author refers to 
three commonly used tools: 

 Net Present Value – NPV: Is the difference between the money flows, duly up-
dated during the project analysis period. This value should be positive indicating 
that the results achieved allow to cover the initial investment and still make a 
profit. If it is null, there was only recovery of the initial investment; 

 Internal Rate of Return - IRR: Is the rate that nullify the NPV. Obtaining a IRR 
above the discount rate indicates that the project is economically feasible. In 
other words, the project manages to generate a rate of return greater than the cost 
of capital; 

 Payback: is the number of years required to recover the investment. That is, it is 
the payback period of the initial investment, assuming that it was done all in year 
zero. 

The planning method proposed in this book chapter considers the acquisition and 
connection of new power lines as the investment to be applied to the distribution 
network. Thus, the economic evaluation takes into account in addition to this In-
vestment (INV), the profits achieved with the application of this new solution - 
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through the reduction of power losses (PL) and expected energy not supplied 
(EENS). 
For the investment economic evaluation, the lifetime project and the discount rate 
must be defined by the investor. The typical duration for planning distribution net-
works is approximately 25 years [27]. 

All necessary investments and all obtained benefits in order to improve the reli-
ability indexes are considered in the economic evaluation. The investment is con-
sidered profitable when the present value (PV) of the incoming related to the im-
provement of reliability indexes and losses reduction is greater than the investment 
made in new power lines construction. This means that the net present value (NPV) 
is positive (equation (1) ).  

The benefit (BNF) corresponds to the savings whose are related to the reliability 
indexes improvement and losses savings. Investment is the total investment for the 
planning project. 

The present value of the savings whose are related to the reliability indexes im-
provement and losses savings can be calculated by the capital recovery factor 
(CRF). CRF, presented in equation (2), is the ratio of a constant annuity to the pre-
sent value of receiving that annuity for a given project lifetime. Thus, for t periods 
bnf1 = bnf2 = … = bnft = bnf - equation (3). 

where: 
dr is the discount rate, and t the project lifetime. 
 

0

NPV BNF Investment
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b. Target Reliability Values 

Distribution system reliability is one of the most important issues in system plan-
ning and operation [28]. Institute of Electrical and Electronics Engineers 
(IEEE)[29] as well as others authors like Canizes et al [30], use the basic reliability 
indexes:  

 Failure rate (λ) – Is the number of faults of a given equipment in a given period 
of time. The failure rate represents the probability of an equipment failure;  

 Repair time (r) – Is the failure average duration; 
 Unavailability (U) – Is the annual outage duration.  

In energy distribution systems, these indices are mathematically related accord-
ing to the equation: 

 
With this, it will be possible to determine the Forced Outage Rate (FOR), another 

relevant index in the reliability analysis. FOR represents the probability of an una-
vailability network equipment when it is requested. This index is defined as the 
number of hours that the equipment is unavailable dividing by the difference be-
tween the number of total hours of a year (T), 8760 hours, and the repair time of 
equipment i. 

The FOR is used to determine the power not supplied in each distribution net-
work line by the following equation: 

         ij ij ijPNS FOR S kW    

(6)  

Thus, the expected energy not supplied is: 

1

87 60 /
N L

ij

i j

E E N S P N S kW h year


    

(7)  

where: 
ij is the line between bus i and bus j, NL is the number of distribution network lines. 

U r    

(4) 

i
i

i

U
FOR

T r


   

(5) 
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The reliability indices such as System Average Interruption Duration Index 
(SAIDI), System Average Interruption Frequency Index (SAIFI), and Expected En-
ergy Not Supplied (EENS), adopted by the IEEE standard [31], are used to evaluate 
reliability of the system. 

The network operator defines target values for the reliability indexes. To achieve 
the new reliability values, the system operator should improve the repair times and 
the failure rates. 

The following reliability indexes (8)-(11) are considered in the proposed method: 
 System Average Interruption Duration Index 

 
Total customer interruption durations

Total number of costumers in the system
SAIDI   (8) 

 

1

1

hours/customer year
i i
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 (9) 

 
 System Average Interruption Frequency Index 

 
Total number of customer interruptions

Total number of costumers in the system
SAIFI   (10) 
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1
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i
i L

N
SAIFI

N


 

 


 




 (11) 

c. Stochastic planning model 

The planner in the decision making under uncertainty has to make optimal deci-
sions throughout a decision horizon with incomplete information. A number of 
stages can be defined for the considered decision horizon, representing a point in 
time where decisions are made or where uncertainty partially or totally vanishes 
[32].  

In this book chapter is considered a two stages planning method with a stochastic 
process represented by a set of scenarios. Thus, two types of decisions can be used 
in the planning process: 

First-stage: The decision is made before stochastic process execution. Thus, the 
variables that represent the first stage does not depends on each stochastic process 
execution. These variables are known as “here and now” variables. 
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Second stage: The decision is made after knowing the stochastic process. Thus, 
the decision depends on each vector of stochastic process execution. When the sto-
chastic process is represented by a set of scenarios, the second stage decision vari-
ables are defined for each considered scenario. 

The two-stage stochastic programming is an effective approach to include the 
impacts of the decision in stochastic optimization problems. More theoretical 
background on stochastic programming models can be found in [32], [31]. 

Usually the distribution network planning is treated as a multiobjective optimi-
zation problem with non-linear programming. This is because in the formulation of 
the problem there are nonlinear constraints related to the power flow, binary varia-
bles among others. Thus, the planning model can be formulated as a mixed integer 
non-linear programming (MINLP), however this problem is complex and difficult 
to solve. Thus, it is important to find a simple method to avoid this complexity. The 
DC power flow constraints are considered in the optimization model (22). The us-
age of a DC model is justified because in many countries, like in Portugal, the dis-
tribution networks have voltage regulators and capacitors banks carefully posi-
tioned along the grid to keep the voltage and reactive power between the desire 
limits. Usually, the voltage stability is placed at the HV/MV substation level. How-
ever, in the Portuguese case the MV/LV transformers also have voltage regulators. 
Therefore, the problem will be formulated as a mixed integer linear programming 
(MILP). 

Power losses linearization 

To make the problem linear it will be necessary to linearize the objective func-
tion. In this case, the only nonlinear term in the objective function is the power 
losses. Abdel-Halim [33] addresses the linearization of power losses according to 
the Venikov method. This approach considers that the lines and cables in the system 
work close to the nominal current, i.e., the economic current density (Jeco.) 

eco ccI J S    (12) 

where: 
Jeco – economic current density (A/mm2)  
Scc – Line section (mm2)  

 
Thus, the power losses can follow the equation (13): 

2' 'P k R I k R I I          (13) 

Replacing in (13) the equation (12): 
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ec' SecoP k R I J      .  (14) 

where: 

''
l

S
I k

U
    (15) 

ccS

L
R

 
   (16) 

in which: 
k’ and k’’ are constants that depend on the type of service (one or three 

phases) 
S – Load (kVA) 
R – Line resistance (Ω/km) 
I – Current that flow in the line (A) 
ρ – Line resistivity at operating temperature (Ω.mm2/km) 
L – Line length (km) 

 
Replacing (15) and (16) into equation (14) the linear equation of power losses is: 

eco

l

k L J
P S

U

  
    (17) 

The current density value is calculated by equation (18): 

310
eco

q
J

n h p CRF




   
 

(18) 

where: 
n – Number of active conductors 
h – number of service hours for the electric conduits per year  
q – Constant value dependent of the line/cable type 
p – Energy price €/kWh 
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Proposed methodology 

Fig. 1 presents the scheme of the proposed methodology. The proposed method-
ology has five main steps, which are presented in more detail as follows. 

Input data

Standard Deviation
 Solar Power
 Wind Power
 Load Demand 
 Thermal Load Demand
 Consumers

Prodicted Values
 Solar Power
 Wind Power
 Load Demand 
 Heat Load Demand
 Consumers

Scenarios Generation

Scenarios Reduction

Stochastic
ZS*

Wait-and-See
ZP*

Deterministic
ZD*

VSS = ZD*-ZS* EVPI = ZS*-ZP*

Monte Carlo Simulation
(Normal Distribution)MATLAB

GAMS Fast Backward/Forward

Generated Scenarios

Reduced Scenarios Scenarios Probability

ZS* ZD* ZP*

Evaluation Metrics

Long-Term Planning Method

 

Fig. 1. Methodology diagram 
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Input data 

The first step is to prepare all the input data to be consider in the model. Data 
like generation and load points, lines and new lines option characteristics, and reli-
ability data. The data regarding to the predicted values for solar power and wind 
power, load and heat demand and the number of consumers as well as their standard 
deviation values are also considered. 

Scenarios generation 

In this step a set of scenarios is generated using Monte Carlo Simulation (MCS) 
following a normal distribution. The predicted and standard deviation values re-
ferred above are used as inputs for the MCS, which is implemented in MATLAB 
software. 

Scenarios reduction 

As a set of thousands of scenarios are generated, becomes imperative to handle 
with the computational tractability of the problem. Thus, the standard scenario re-
duction techniques developed in [20] is used. These scenario reduction algorithms 
exclude the scenarios with low probabilities and combines those that are close to 
each other in terms of statistic metrics [20]. They determine a scenario subset of the 
prescribed cardinality and probability which is closest to the initial distribution in 
terms of a probability metric [31]. The main purpose of scenario reduction is to 
reduce the size of the problem.  

General Algebraic Modeling System (GAMS) with SCENRED toolbox consid-
ering the fast backward/forward method is used to deal with the scenarios reduction. 

Long-term planning model using a two-stages stochastic method 

This optimization model has as outputs the decision variables regarding to the 
investment in new lines, power losses and expected energy not supplied costs, and 
the SAIDI, SAIFI reliability indexes. The total expected planning cost is represented 
by (19), corresponding to the first stage planning cost (PC1) and second stage plan-
ning cost (PC2)  

   1 2Minimize TotalE PC PC E PC   (19) 

The expected planning cost for the first stage, PC1, is represented by (20), which 
includes the cost of new lines placement. 
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 (20) 

where: 

CostINV – Initial investment in new lines (€) 
y(i,j,c) – Decision binary variable to connect bus i and j for the chosen line option 

c 
CRF– Capital Recovery Factor 
CostM – Maintenance cost (€) 

The expected planning cost in the second stage, PC2 (21) includes the power 
losses cost (first term), expected energy not supplied costs (second term), and excess 
of power supply costs (third term). 

FOR(i,j,c) and P(i,j,c) are respectively the forced outage rate and the power flow 
between bus i and bus j according to the chosen line option c. FOR is calculated 
considering the basis reliability indexes r and λ. Since these indexes are used to 
determine the remaining indicators, so, minimizing the FOR those indicators are 
also minimized. eT is the equivalent average time in hours and according to Gus-

tafson [34] is the average number of hours during which it would be necessary for 
the peak load to be carried to give the same energy loss as that given by the actual 
load throughout the year. To obtain more reliable results, it is necessary to subtract 
to the eT the number of probable hours in which the lines may be out of service in 

the 8760 hours of the year. 
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 , , ) lj c  

 
(21) 

The objective function (19) is subjected to several constraints. Below it is possi-
ble to find all the model constraints (22)-(44). 
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Network grid constraints 

Power balance (first Kirchhoff law) 

   ( , ) ( , ) ( ) ( )

( , ) ( , ) ( , ) ( , )

( , , , ) ( , , , )
1 1 1 1

( )

0 ( , )

nd d b
DG DG SP

b b b
E L V

DG g s GCP g s DG g Supplier sp
g g sp

Discharge e s Charg e e s Load l s Charg e v s
e l v

NB NO NB NO

i j c s j i c s
i c j c

p p p p

p p p p

P P i s

  

  

   

   

   

  

  

  

 

  (22) 

Maximum admissible line flow 

 max
( , , , ) ( , , ) ( , , ) , 0,1 , ( , , )i j c s i j c i j c lp p y s y i j c          (23) 

Radiality condition 

This constraint ensures the radial topology of the distribution network. 

 ( , , )
( , , ) 1

0,1 , ( , , )
NL

i j c l
i j c

y NB NBS y i j c


        (24) 

Unidirectional power flow 

This constraint ensures the power unidirectionality between bus i and bus j and 
also the choice of only one line option c in that direction. 

 ( , , ) ( , , ) 1 0,1 , ( , , )i j c j i c ly y y i j c         (25) 

Transfer buses 

A bus with no generation or demand is referred as a transfer bus. This kind of 
buses are used to connect a load bus to other load bus and is not a terminal bus (main 
condition to use the transfer buses), i.e., there are at least two more circuits “leav-
ing” the transfer bus. 

To model the use of a transfer bus, first a binary variable must be defined such 
that is equal to 1 if the transfer bus is used; otherwise, is equal to 0. To consider 
transfer buses (24) is replaced by (26): 
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   (26) 

 ( , , ) ( ) ( ) 0,1i j c w w BTy z z w       (27) 

 ( , , ) ( ) ( ) 0,1 , , ( , , )j i c w w BT ly z z w i j c          (28) 
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   (29) 

where zj is the binary variable related to the transfer buses 

Constraints (26)-(29) avoid the loop generation due to the presence of transfer 
buses and also prevent the appearance of a terminal transfer bus (with only one 
connected circuit). 

Avoid distributed generator isolation from substation 

( , , ) ( , , ) ( )
( , , ) 1 ( , , ) 1

 0 ( , , )
NL NL

i j c j i c g B l
i j c i j c

d d D g i j c
 

           (30) 

( ) 1g DGD g     (31) 

( ) 0g DG BSD g       (32) 

( , , ) ( , , ) ( , , )i j c i j c ld nDG y i j c     
(33) 

where D(g) is a fictitious load of each distributed generator that only can be fed by 
the substation. d(i,j,c) is the fictitious flow associated with branch i,j for c line 



17 

 

option. If it is allowed to the distributed generators supply some loads 
independently, then (30)-(33) are not considered in the model. 

Controllable DG units and external suppliers 

Maximum and minimum limits for active generated power 

( ) ( )
d

DG g DGM inLimit g DGp P g      (34) 

( ) ( )
d

DG g DGMaxLimit g DGp P g      (35) 

The upstream supplier limits 

( ) ( )    Supplier sp SMinLimit spp P sp    (36) 

( ) ( )    Supplier sp SMaxLimit spp P sp        (37)  

Reliability indexes limits 

System Average Interruption Frequency Index 

máxSAIFI SAIFI  (38) 

System Average Interruption Duration Index 

máxSAIDI SAIDI  (39) 
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Energy storage systems constraints 

The charging and discharging status of the ESSs are respectively represented by 

ESSx and ESSa . Charging and discharging cannot occur simultaneously 

( , ) ( , ) 1      ,ESS e s ESS e sx a e s     (40) 

The maximum discharge limit for each ESS 

( , ) ( ) ( , )         ,Discharge e s DischargeLimit e ESS e sp P x e s     (41) 

The maximum charge limit for each ESS 

( , ) ( ) ( , )    ,C h a r g e e s C h a r g e L im it e E S S e sp P a e s     (42) 

Parking lot constraints 

The EVs are treated as virtual batteries in the proposed model. A virtual battery 
can represent a parking lot or a set of EVs located in the network. In this model the 
EV charge is equal to charge limit multiplied by simultaneity factor (sf). sf is con-
sidered equal to 1. 

The charge limit for each virtual battery v is represented by (43): 

( , ) ( , ) ,   Charge v s ChargeLimit v s v v sp P sf     (43) 

Generation curtailment power 

The generation curtailment power of non-dispatchable DG units cannot be higher 
than the predicted amount of generation. 

( , ) ( , ) , ,              nd
GCP g s DGScenario g s DGt sp P g     (44) 
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District heating 

The use and development of district heating (DH) is increasing in several coun-
tries, namely in north of Europe. The generating heat plants in DH send out the heat 
to the households as water or steam. Thus, the constraints (45)-(46) could be con-
sider to incorporate the heat demand in the proposed model. The considered heat 
plants in this model are the CHP and boiler plants. 

Power balance considering CHP (first Kirchhoff law) 

   ( , ) ( , ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

( , , , ) ( , , , )
1 1 1 1

( )

0 ,

nd d b
DG DG SP

b b b
E L V

DG g s GCP g s DG g CHP g Supplier sp
g g sp

Discharge e s Charge e s Load l s Charge v s
e l v

NB NO NB NO

i j c s j i c s
i c j c

p p p p p

p p p p

P P i s

  

  

   

    

   

  

  

  

 

  (45)  

Heat balance 

     ( , ) ( , ) ( , ) 0
heatboiler chp heatload

h s hp s hl s
h hp hl

hb hchp hload
  

        (46)  

CHP constraints 

CHP plants in this model have the following operation region (Fig.2). 
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Fig. 2. CHP operation region 

Each line equation (linear equation – algebraic equation) of this region are the 
constraints for these units, i.e., lines equation 1, 2, 3, 4. 

Evaluation metrics 

The well-known indices, such as the expected value of perfect information 
(EVPI) and the value of stochastic solution (VSS) are used to evaluate the benefits 
of the stochastic programming [32]. The EVPI represents the amount that the deci-
sion maker is not able to gain due to the presence of imperfect information, e.g. 
forecasts. It is useful to evaluate how the uncertainty factors affect the evaluated 
optimal problem. Regarding VSS, it’s represents the advantage of using stochastic 
programming over a deterministic approach [32].  

EVPI for minimization problems can be represented by (47). The stochastic so-
lution, represented by ZS* is calculated by the stochastic programming approach and 
represents the total expected cost (S). ZP* represents the wait-and-see solution 
(WSS). The WSS can be obtained by using the deterministic approach for each sce-
nario. Then, WSS is computed by multiplying the individually obtained cost by each 
scenario probability. 

* *-S PEVPI z z  (47) 

The VSS equation for minimization problems is represented through equation 
(48)(AJ):  

H (MWth)

P (MW)

A

D

B

C

1

2

3

4
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* *-D SVSS z z  (48) 

where ZD* is the optimal value of the modified stochastic problem. It is a determin-
istic version of the original problem with an average scenario. The optimal decision 
variables of the original stochastic problem are considered as input in the modified 
problem. 
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4. Case study 

This section presents a case study to demonstrate how the proposed method is 
applied. A distribution network (Fig. 3) with 13 buses, 30kV and one substation 
(located in bus 1) is used in this book chapter. Connections between buses are made 
by AA 90 overhead lines type. The dashes lines presented in Fig. 3 are new connec-
tion options and do not exist in the actual network. Fig. 4, Fig. 5 and Fig. 6 present 
respectively the standard deviation for each resource, the load and heat demand pre-
dictions and the intermittent energy resources (solar and wind) and consumers pre-
dictions for year 2050. 

 

1

2

3

4 5

67 8 9

10 11

12

13

Substation Wind Farm Energy Storage System

EV Parking Lot Solar Panel Biomass 

Load Point New line option

 

Fig. 3. 13 buses distribution network 



23 

 

 
Fig. 4. Standard deviation for each resource 

 
Fig. 5. Load and heat demand predictions 

 
Fig. 6. Intermittent energy resources and consumers predictions 
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This network has 9 load points, one parking lot for EVs, 4 DG units (one wind 
generator, one solar generator and 2 biomass units). This distribution network has 
also 2 storage systems located at buses 2 and 4. The energy resources data as well 
as the prediction for the number of consumers are shown in Table 1 and Table 2 
respectively. 

In this case study, the owners of energy storage systems (ESS) are external play-
ers. These owners have an agreement to keep a 20% reserve capacity for the network 
operator (this capacity should not be by the ESS owner). This capacity can be used 
for instance to deal with excess or a lack of generation by the network operator. 
Two 1MW ESS units are available in the network. 0.4MW of capacity are reserved 
for the system operator (0.2MW for charge and 0.2MW for discharge). The others 
distributed energy resources belongs to the network operator. 
 
Table 1. Energy resource data 

Energy Resource 

Capacity 

(MW) 

Prediction 

(MW) Units 

min – max min – max 

Substation 0-10 -- 1 

Photovoltaic 0.75-0.75 0.2680-0.7470 1 

Wind 0.75-0.75 0.1702-0.7707 1 

Biomass 0-0.50 -- 2 

Storage 

Available capacity for 
Charge 

0.20-0.20 -- 

2 
Available capacity for 
Discharge 

0.20-0.20 -- 

Parking lots Charge 1.20-1.20 -- 1 

Load demand 10-10 5.2859-8.0911 9 

 
Table 2. Prediction for the number of consumers 

 Expected minimum Expected uncertain 

Number of Consumers 631 155 

 
Average wind and solar power prediction, as well as the load demand prediction 

(taking into account 120 scenarios) are presented in Fig. 7 and Fig. 8 respectively.  
The EVs Parking lot is located at bus 3 and has 20 car places. The maximum 

charge capacity for each place is 60kW. In this case study, a simultaneity factor 
equal to one is considered. Thus, the maximum charge capacity for the parking lot 
is 1200kW. 
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Fig. 7. Average solar and wind power prediction 

Wind and solar power are average predicted values for the lifetime project over 
the year. Thus, these average values considering their standard deviations will be 
considered in the scenarios generation. Through Fig. 7 it is possible to see that the 
expected minimum for wind power and solar power are 0.1702MW and 0.2680MW 
respectively. Considering the expected uncertain, the expected maximum for wind 
power and solar power are 0.7707MW and 0.7470MW respectively. 
 

 
Fig. 8. Load demand and consumers prediction 
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Analyzing Fig. 8 the demand for EV parking lot considered in this case study is 
equal to the maximum charge capacity of the parking. As it said above a simultane-
ity factor equal to one is also considered. The expected minimum for power demand 
and for number of consumers are 5.2859MW and 631 consumers respectively with 
expected uncertain of 2.8052MW and 155 consumers respectively. Thus, the ex-
pected maximum for load demand is 8.0911MW and for the number of consumers 
is 786. 

To complement the study presented in this book chapter it will be considered the 
possibility to have a district heating (Fig. 9). To supply the required heat demand, 4 
heat sources are considered, 2 heat-only boiler stations (or just boiler stations) and 
2 CHP units. In addition to providing heat, the CHP units also provides electrical 
power, so this kind of unit can contribute to an improvement of the EENS. As a 
result, can also contribute to the reduction of the network investment costs and in 
energy not supplied and power losses costs. 

Thus, 2 CHP units and 2 heat-only boiler stations are carefully installed in the 
distribution network (Fig. 9). The heat demand points are in the same load demand 
buses.  

 
 
Table 6 and Table 7 present the heat resource and demand data. In Fig. 10 is 

depicted the expected minimum (2.8802MWth) and the expected uncertain 
(0.9027MWth). 

The following four case studies are presented to show the impact of using storage 
units and the district heating in the distribution network planning problem.  

District heating is only affected by CHP units and heat-only boiler stations. How-
ever, CHP heat and electricity supply are dependent as can be seen in Erro! A ori-
gem da referência não foi encontrada.. 

 Case A – ESS and CHP are not considered; 
 Case B – ESS is considered and CHP is not; 
 Case C – CHP is considered and ESS is not; 
 Case D – ESS and CHP are considered. 

Table 3 presents the initial average values of SAIDI and SAIFI indexes, i.e, the 
values for the actual network considering and not considering the district heating 
(CHP units). For all analyses conducted in this case study it is intended to achieve 
a reduction at least 30% in SAIDI and 15% in SAIFI. In this case study, the way to 
achieve these reductions is investing in new lines construction. Two lines option are 
considered. Table 4 and Table 5 present the lines thermal limits, the basic reliability 
indexes (failure rate - λ and repair time - r) for the investment opinion 1 (line AA90) 
and option 2 (line AA160) respectively. The bold rows represent new option con-
nections between buses. It is possible to see in Table 4 several cost and maintenance 
costs equal to zero. This means that the respectively AA90 line type exist in the 
actual network, thus its costs are considered zero in the proposed long-term plan-
ning method. This method considers also the possibility to change a line type for 
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the other (AA90 by AA160). These tables also show the construction line cost (line 
cost plus installation cost). The maintenance cost for each new line is also presented. 

 
Table 3. Initial reliability indexes 

District heating SAIDI 

(hour/customer x year) 

SAIFI 

(interruption/customer x year) 

YES 7.1555 0.6887 

NO 8.3232 0.6561 

 
Table 4. Lines data for option 1 (line AA90) 

Bus out Bus in 

AA90 

Limit 

(MVA) 

Failure rate  

(failures/year) 

Repair time  

(hours) 

Cost 

(m.u.) 

Maintenence cost 

(m.u.) 

1 2 4 0.1000 50.9600 0 0 

1 3 4 0.3222 49.8230 0 0 

1 7 4 0.1706 29.9800 220,250 44,050 

2 4 4 0.5000 2.6490 0 0 

2 8 4 0.1000 6.6886 0 0 

3 7 4 0.3000 2.5900 0 0 

3 8 4 0.1000 6.6886 0 0 

3 10 4 0.2000 3.1537 0 0 

4 5 4 0.3000 3.3631 0 0 

4 9 4 0.0891 1.3546 4,500 900 

5 6 4 0.3000 2.6590 0 0 

6 9 4 0.0891 1.3546 3,000 600 

6 13 4 0.0891 1.3546 18,000 3,600 

7 10 4 0.1200 1.2286 45,000 9,000 

8 9 4 0.1000 6.3954 0 0 

8 11 4 0.1000 3.0476 0 0 

9 13 4 0.0891 1.3546 7,500 1,500 

10 11 4 0.3000 2.4480 0 0 

10 12 4 0.4000 2.7211 0 0 

11 12 4 0.1200 1.2286 9,000 1,800 

11 13 4 0.2000 2.9631 0 0 
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Table 5. Lines data for option 2 (line AA160) 

Bus out Bus in 

AA160 

Limit 

(MVA) 

Failure rate 

(failures/year) 

Repair time 

(hours) 

Cost 

(m.u.) 

Mintenence cost 

(m.u.) 

1 2 6 0.1000 50.9600 210,125 42,025 

1 3 6 0.3222 49.8230 213,500 42,700 

1 7 6 0.1462 24.9834 224,750 44,950 

2 4 6 0.5000 2.6490 13,125 2,625 

2 8 6 0.1000 6.6886 10,500 2,100 

3 7 6 0.3000 2.5900 7,875 1,575 

3 8 6 0.1000 6.6886 15,750 3,150 

3 10 6 0.2000 3.1537 10,500 2,100 

4 5 6 0.3000 3.3631 18,375 3,675 

4 9 6 0.0764 1.1289 7,875 1,575 

5 6 6 0.3000 2.6590 13,125 2,625 

6 9 6 0.0764 1.1289 5,250 1,050 

6 13 6 0.0764 1.1289 31,500 6,300 

7 10 6 0.1029 1.0238 78,750 15,750 

8 9 6 0.1000 6.3954 21,000 4,200 

8 11 6 0.1000 3.0476 13,125 2,625 

9 13 6 0.0764 1.1289 13,125 2,625 

10 11 6 0.3000 2.4480 5,250 1,050 

10 12 6 0.4000 2.7211 36,750 7,350 

11 12 6 0.1029 1.0238 15,750 3,150 

11 13 6 0.2000 2.9631 3,936 788 
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Fig. 9. 13 buses distribution network with district heating 
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Fig. 10. Heat demand prediction 

The most commonly cogeneration units used are the single-cycle gas or steam 
turbine units. In this book chapter, the cogeneration unit used is the single-cycle 
steam turbine without condensation. Considering this kind of unit, the feasibility 
region is convex, which means that any point belonging to a straight line drawn 
between two distinct points belongs to the feasibility region presented. The consid-
ered CHP units presents the following convex feasibility region (Fig. 11). 

 

Fig. 11. Feasibility region for cogeneration units 
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Table 6. Heat resource data 

Energy Resource Power Capacity 

(MW) 

Heat Capacity 

(MWth) 

Units 

min – max min – max 

CHP 0-1.5 0-1.0 2 

Heat-only boiler -- 10-10 2 

 
Table 7. Heat demand data 

Energy Resource 

Heat Capacity 

(MWth) 

Heat Prediction 

(MWth) 

min – max min – max 

Heat demand 5-5 2.8802-3.7829 

 
The EENS cos is 3 m.u/kWh, and of 0.12 m.u./kWh for loss cost. For the ex-

pected energy not supplied cost, investment cost, loss cost, a discount rate of 5% is 
considered for a 30 years lifetime project, which leads to a Capital Recovery Factor 
equal to 15.37. In this case study, the considered value for Te is 4500 hours and all 
the terms of the objective function (21) have the identical importance for the distri-
bution system operator. 

The proposed work was developed in MATLAB R2014b and TOMLAB 8.1 64 
bits with CPLEX solver (version 12.5) using a computer with one Intel Xeon E5-
2620 v2 processor and 16 GB of RAM running Windows 10 Pro. 

5. Results and discussion  

Two-stage stochastic method is applied to solve a long-term planning problem 
in the considered case study. This optimization problem considered 120 scenarios 
and deals with 167,009 variables and 86,492 constraints. Table 8 presents the peak 
memory and the execution time for the two-stage stochastic long-term planning 
problem. 
 
Table 8. Peak memory and execution time for each case 

Case 
Peak memory 

(MB) 

Execution time  

(seconds) 

A 244 2,152 

B 192 1,832 

C 225 1246 

D 140 625 
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The execution times are less than an hour, so they are compatible for the availa-
ble timeframe in the planning-making process. A memory test was made to evaluate 
the impact on computer system resources through MATLAB memory profiler. This 
command report the peak memory for each function used in the methodology de-
veloped code. As can be seen in Table 8 the higher peak memory was verified in 
case A. Even the peak memory doesn’t exceed 300 MB in this case. Thus, the pro-
posed work in this book chapter is compatible with a wide range of available com-
puters in the market.  

Fig. 12 and Fig. 13 present the optimal radial topology for the two-stage stochas-
tic method (ZS*) without district heating and considering district heating, respec-
tively. In other words, it is being considered the uncertainty in load and heat de-
mand, in the number of consumers, and in the wind and solar power in the actual 
distributed power network (without any option of line construction). 

 
Fig. 12. Initial working radial topology without district heating 
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Fig. 13. Initial working radial topology considering district heating 

Through Table 9 it is possible to see the costs for power losses and EENS when 
the two-stage stochastic method is applied to the actual network with and without 
district heating. Once the district heating is affected by CHP units, and for the dis-
tribution power network this kind of units are distributed generators it is verified (as 
can be seen in Table 9) a reduction in the power losses and EENS costs. 
 
Table 9. Initial Costs with and without district heating 

District heating Initial Loss cost 

(m.u.) 

Initial EENS cost 

(m.u.) 

YES 626,970 1,131,900 

NO 695,480 3,069,500 

 
The next two figures (Erro! A origem da referência não foi encontrada. and 

Erro! A origem da referência não foi encontrada.) present the studies referred to 
case A and B using the two-stage stochastic optimization model. Optimal invest-
ment (construction of new lines) to be applied in network in order to improve the 
reliability indexes and at the same time minimizing the power losses cost, expected 
energy not supplied cost and the investment cost is obtained. These studies, also 
present the optimal radial topology to be chosen in order to operate in considered 
conditions (taking into account all scenarios). For case A three new lines are chosen, 
one AA90 connected between bus 7 and bus 10, and two AA160 connected between 
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bus 1 and bus 7 and bus 6 and bus 9. The total cost associated to this case is 
3,516,065 m.u. and the total benefit of this investment is 1,604,200 m.u. for the 
lifetime project. 

Regarding to case B four new lines are selected, three AA90 between buses 7-
10, 6-9 and 11-12 and one AA160 between busses 1-7. In this case the total cost is 
3,565,618 m.u. and the total benefit is 1,740,050 m.u.. 

 
Fig. 14. ZS* radial topology for case A 
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Fig. 15. ZS* radial topology for case B 

Erro! A origem da referência não foi encontrada. and Erro! A origem da 
referência não foi encontrada., are related to the studies made for case C and D. 
Also, the optimal topology to be operated for each case is also obtained. For case C 
and D three new lines are chosen, one AA90 connected between bus 7 and bus 10, 
and two AA160 connected between bus 1 and bus 7 and bus 6 and bus 9. Case C 
presents a total cost of 2,863,415 m.u. and a total benefit of 69,060 m.u.. Regarding 
to case D the total cost is 2,701,645 m.u. and the total benefit is 177,710 m.u.. 

 
Fig. 16. ZS* radial topology for case C 
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Fig. 17. ZS* radial topology for case D 

 
A summary of the new lines construction for each case is presented in Table 10. 

Through this table it is possible to see that the substitution of the existence lines 
wasn’t selected by proposal model. 

 
Table 10. New lines construction for cases A, B, C and D 

 New line connections 

(Bus out – Bus in) 

Substitution 

 AA90 AA160 AA90 by AA160 

Case A 7-10 1-7 

9-6 

- 

Case B 7-10 

9-6 

11-12 

1-7 - 

 

Case C 7-10 1-7 

9-6 

- 

Case D 7-10 1-7 

9-6 

- 

 
Table 11 and Table 12 present the result costs for each objective term as well as 

the total costs and the monetary benefits achieved in each case. Once CHP units are 
used in the district heating cases and they also contribute as distributed generators 
to the distribution power network, the EENS costs and losses costs are lower than 
the cases without district heating. Hence, the total costs for the cases that include 
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CHP units are also lower as well as benefit. It can be said that with the necessary 
investment to achieve the desired values of SAIDI and SAIFI the total monetary 
benefit is small when compared with the cases without CHP.  
 
 
Table 11. Cost results for cases A, B, C and D 

 

Case EENS cost 

(m.u.) 

Loss cost 

(m.u.) 

Investment cost 

(m.u.) 

Excess of power supply cost 

(m.u.) 

Total cost 

(m.u.) 

ZS* 

A 1,582,700 812,880 1,120,485  0 
3,516,065 

B 1,525,800 891,830 1,147,988 0 
3,565,618 

C 1,089,400 653,530 1,120,485 0 
2,863,415 

D 974,610 606,550 1,120,485 0 
2,701,645 

 
 
 
 
 
Table 12. Benefit for cases A, B, C and D 

 

Case EENS cost Benefit 

(m.u.) 

Loss cost benefit 

(m.u.) 

Total cost benefit 

(m.u.) 

ZS* 

A 1,486,800 117,400 1,604,200 

B 1,543,700 196,350 1,740,050 

C 42,500 26,560 69,060 

D 157,290 20,420 177,710 

 
Analyzing Table 13, can be seen that the payback for cases C and D is greater 

than the lifetime project and present an IRR negative. So, this means that the invest-
ment will not be recovered in the lifetime project. Thus, the investment in new lines 
construction to improve the SAIDI and SAIFI will not be economically feasible. 

 
Table 13. Economic Evaluation for case C and D 

 

Case Payback 

(years) 

IRR 

(%) 

NPV 

(m.u.) 

ZS* 

A 12.58 22.21 16,192 

B 13.10 17.37 12,969 

C >30 <0 71,852 
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D >30 <0 61,329 

 
In Fig. 18 is depicted a comparison between the total costs obtained by the two-

stage stochastic method (Zs*) and deterministic method (Zd*). It is evident the lower 
costs presented by the two-stage stochastic method for each case. The higher costs 
are present in cases A and C of deterministic method, this is due to the existence 
generation power excess and the non-existence of ESS. Results suggest that ESS 
contributes to avoid a higher cost when the deterministic model is used and shows 
advantage of Two-stage stochastic method (even without ESS the generation power 
excess is zero). The values of the quality indices are shown in Fig. 19. Case A and 
case C are good proofs of the previous statement, where the VSS is higher in cases 
A and C (180% and 222%) which means that without ESS the stochastic model is 
more important to achieve lower expected costs mitigating the uncertainty. In fact, 
these VSS very high values for cases A and C are related to the existence of gener-
ation power excess. 

For cases A, B, C and D a reduction of 64%, 11%, 69% and 22% is obtained 
when Zs* is used.  

 

 
Fig. 18. Expected total costs for each case 
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Fig. 19. EVPI and VSS for the considered cases 

 
The new reliability indexes when the two-stage stochastic model is used are 

shown in Fig. 20 and Fig. 21. As can be seen the obtained values are lower when 
compared with the initial values of SAIDI and SAIFI (Table 3). The reliability in-
dexes values in the case B have more considerable changes when compared with 
the other three cases, this is related to the new lines constructions that the two-sto-
chastic model has chosen (Table 10). 

 
 
 
 
 
 

 
Fig. 20. Expected SAIDI index 
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Fig. 21. Expected SAIFI index 

 
 

6. Conclusions  
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Nomenclature  

Indices   

c – Line options 

e – Energy Storage Systems (ESSs) 

g – Distributed Generator unit (DG) 

h – Heat-only boiler unit  

hl – Heat load 

hp – CHP heat power  

i – Electrical buses 

j – Electrical buses 

l – Loads 

s – Scenarios 

sp – External Suppliers 

v – Electric vehicles parking lot (EV) 

w – Transfer buses 

 
Parameters   

BNF – Benefit from the solution applied [€] 

CostEENS – Expected Energy not Supplied cost [€] 

CostGCP – Generation curtailment power cost [€] 

CostINV – Initial investment in new lines [€] 

CostM – Maintenance cost [€] 

CostPL – Power Losses cost [€] 

dr – Discount Rate 

EENS – Expected Energy Not Supplied 

EVPI – Expected Value of Perfect Information 

FOR – Forced Outage Rate 

FOR(i,j,c) 
– Forced Outage Rate between bus i and bus j according to 

the chosen line option c 

h – Number of service hours for the electric conduits per year 
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I – Current that flow in the line [A] 

Investment – Total investment for the planning project [€] 

Jeco – Economic Current Density [A/mm2] 

k’ and k’’   
– Constants that depend on the type of service (one or three 

phases) 

L – Line length [km] 

n – Number of active conductors 

NB – Number of buses 

nDG – Number of DG units 

NL – Number of distribution network lines 

NO – Number of line options 

NPV – Net Present Value 

NS – Number of scenarios 

NW – Number of transfer buses 

p – Energy price [€/kWh] 

PChargeLimit(e)  – Maximum charge rate of Energy Storage Systems [kW] 

PDGMaxLimit(g) ,  – Maximum active power of DG [kW] 

PDGMinLimit(g) – Minimum active power of  DG [kW] 

PDGScenario(g,s)  – Forecasted generation of DG [kW] 

PDischargeLimit(e)  – Maximum discharge rate of Energy Storage Systems [kW] 

Pmáx
(i,j,c)  

– Maximum admissible line flow between bus i and bus j ac-

cording to the chosen line option c 

PSMaxLimit – Maximum active power of suppliers [kW] 

PSMinLimit – Minimum active power of suppliers [kW] 

PSupplier(sp)  – Active power of external suppliers  

q – Constant value dependent of the line/cable type 

r – Repair time [h] 

R – Line resistance [Ω/km] 

S – Load [kVA] 
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SAIDImax  
– Maximum Limit to System Average Interruption Duration 

Index Limit [h/consumer.year] 

SAIFImax  
– Maximum Limit to System Average Interruption Fre-

quency Index [interruption /consumer.year] 

Scc – Line section [mm2] 

sfv – Simultaneity Factor 

t – Project Lifetime [years] 

T – Number of total hours of a year 

Te – Time equivalent [h] 

U – Unavailability 

λ – Failure rate 

ρ – Line resistivity at operating temperature [Ω.mm2/km] 

 

Variables 
 

 

aESS(e,s)   – Discharging status of the Energy Storage Systems 

D(g)   – Fictitious load of each distributed generator g 

d(i,j,c)   – Fictitious flow associated with branch i,j for c line option 

hb(h,s)  – Heat power for boiler unit h in scenario s 

hchp(hp,s)  – Heat power for CHP unit hp in scenario s 

hload(hl,s)   – Heat demand for hl heat load in scenario s 

P(i,j,c) 
– Power Flow between bus i and bus j according to the chosen 

line option c 

PC1 – Expected Planning Cost for the First Stage 

PC2 – Expected Planning Cost for the Second Stage 

PCharge(e,s)  – Active power charging of Energy Storage Systems [kW] 

PDischarge(e,s)  – Active power discharge of Energy Storage Systems [kW] 

PLoad(l,s)  – Active power load for l load scenario s 

SAIDI 
– System Average Interruption Duration Index [h/con-

sumer.year] 

SAIFI 
– System Average Interruption Frequency Index [interrup-

tion/consumer.year] 
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VSS – Value of Stochastic Solution 

xESS(e,s)  – Charging status of the Energy Storage Systems 

z(w)   – Binary variable related to the transfer buses 

 

Sets   

ΩB – Set of buses 

ΩBS – Set of substation buses 

ΩBT – Set of transfer buses 

ΩDG – Set of DG 

Ωd
DG – Set of dispatchable DG 

Ωnd
DG – Set of non-dispatchable DG 

ΩE – Set of ESS 

Ωb
E – Set of ESS bus 

Ωheatboiler – Set of heat boiler 

Ωheatload – Set of heat load 

Ωhp – Set of CHP heat power 

ΩL – Set of load 

Ωb
L – Set of load buses 

Ωl – Set of lines 

ΩSP – Set of  external suppliers 

Ωb
SP – Set of  external suppliers buses 

ΩV – Set of EV 

Ωb
V – Set of EV buses 
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