26 research outputs found

    Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    Get PDF
    © 2017 American Chemical Society. We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method composed of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon an increase in the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates using pyrolysis-gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized for tuning of the composition of the bio-oil downstream

    Electrocatalytic Activity and Stability Enhancement through Preferential Deposition of Phosphide on Carbide

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Phosphides and carbides are among the most promising families of materials based on earth-abundant elements for renewable energy conversion and storage technologies such as electrochemical water splitting, batteries, and capacitors. Nickel phosphide and molybdenum carbide in particular have been extensively investigated for electrochemical water splitting. However, a composite of the two compounds has not been explored. Here, we demonstrate preferential deposition of nickel phosphide on molybdenum carbide in the presence of carbon by using a hydrothermal synthesis method. We employ the hydrogen evolution reaction in acid and base to analyze the catalytic activity of phosphide-deposited carbide. The composite material also shows superior electrochemical stability in comparison to unsupported phosphide. We anticipate that the enhanced electrochemical activity and stability of carbide deposited with phosphide will stimulate investigations into the preparation of other carbide–phosphide composite materials

    Effectiveness of the Local Adaptation Plan of Action to support climate change adaptation in Nepal

    Get PDF
    A key challenge in climate change adaptation in developing countries as a whole, and to handling global change in particular, is to link local adaptation needs on the one hand, with national adaptation initiatives on the other, so that vulnerable households and communities can directly benefit. This study assesses the impact of the Nepal government’s efforts to promote its Local Adaptation Plan of Action (LAPA) and its applicability to other least developed countries (LDCs). Based on data gathered from two field studies in Nepal, the research shows that the Nepal’s LAPA has succeeded in mobilizing local institutions and community groups in adaptation planning and recognizing their role in adaptation. However, the LAPA approach and implementation have been constrained by sociostructural and governance barriers that have failed to successfully integrate local adaptation needs in local planning and increase the adaptive capacity of vulnerable households. This paper describes the mechanisms of suitable governance strategies for climate change adaptation specific to Nepal and other LDCs. It also argues the need to adopt an adaptive comanagement approach, where the government and all stakeholders identify common local- and national-level mainstreaming strategy for knowledge management, resource mobilization, and institutional development, ultimately using adaptation as a tool to handle global change

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Domestic violence and decision-making power of married women in Myanmar: analysis of a nationally representative sample

    Get PDF
    BACKGROUND: Women in Myanmar are not considered decision makers in the community and the physical and psychological effect of violence makes them more vulnerable. There is a strong negative reaction, usually violent, to any economic activity generated by women among poorer and middle-class families in Myanmar because a woman's income is not considered necessary for basic survival. OBJECTIVE: Explore the relationship between domestic violence on the decision-making power of married women in Myanmar. DESIGN: Cross-sectional. SETTING: National, both urban and rural areas of Myanmar. PATIENTS AND METHODS: Data from the Myanmar Demographic and Health Survey 2015-16 were used in this analysis. In that survey, married women aged between 15 to 49 years were selected for interview using a multistage cluster sampling technique. The dependent variables were domestic violence and the decision-making power of women. Independent variables were age of the respondents, educational level, place of residence, employment status, number of children younger than 5 years of age and wealth index. MAIN OUTCOME MEASURES: Domestic violence and decision-making power of women. SAMPLE SIZE: 7870 currently married women. RESULTS: About 50% respondents were 35 to 49 years of age and the mean (SD) age was 35 (8.4) years. Women's place of residence and employment status had a significant impact on decision-making power whereas age group and decision-making power of women had a relationship with domestic violence. CONCLUSION: Giving women decision making power will be indispensable for the achievement of sustainable development goals. Government and other stakeholders should emphasize this to eliminate violence against women. LIMITATIONS: Use of secondary data analysis of cross-sectional study design and cross-sectional studies are not suitable design to assess this causality. Secondly the self-reported data on violence may be subject to recall bias. CONFLICT OF INTEREST: None

    Long-term yield trend and sustainability of rainfed soybean–wheatsystem through farmyard manure application in a sandy loam soil of the Indian Himalayas

    Get PDF
    A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However,the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean– wheat system, increased K input is required to maintain soil nonexchangeable K level
    corecore