38 research outputs found

    Detection of conjugation related type four secretion machinery in Aeromonas culicicola

    Get PDF
    BACKGROUND: Aeromonas sp. can now be considered relatively common enteropathogens due to the increase of diseases in humans. Aeromonas culicicola is a gram negative rod-shaped bacterium isolated for the first time from the mosquito mid-gut, but subsequently detected in other insects and waters also. Our previous study discovered that A. culicicola harbors three plasmids, which we designated as pAc3249A, pAc3249B and pAc3249C. We investigated and report here the existence and genetic organization of a Conjugal Type IV Secretion System (TFSS) in pAc3249A. METHODOLOGY/PRINCIPLE FINDING: The complete operon is 11,061 bp in length and has G+C content of 47.20% code for 12 ORFs. The gene order and orientation were similar to those found in other bacteria with some differences. We have designated this system as AcTra for Aeromonas culicicola transfer system. BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli. Other bioinformatics studies have been performed to predict conserved motifs/domains, signal peptides, transmembrane helices, etc. of the ORFs. CONCLUSIONS/SIGNIFICANCE: BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli

    Development of selective agonists and antagonists of P2Y receptors

    Get PDF
    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets

    An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved

    Get PDF
    Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known.Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells.We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori

    No full text
    Type IV secretion systems (T4SSs) are commonly used secretion machineries in Gram-negative bacteria. They are used in the infection of human, animal, or plant cells and the propagation of antibiotic resistance. The T4SS apparatus spans both membranes of the bacterium and generally is composed of 12 proteins, named VirB1–11 and VirD4 after proteins of the canonical Agrobacterium tumefaciens T4SS. The periplasmic core complex of VirB8/VirB10 structurally and functionally links the cytoplasmic NTPases of the system with its outer membrane and pilus components. Here we present crystal structures of VirB8 of Brucella suis, the causative agent of brucellosis, and ComB10, a VirB10 homolog of Helicobacter pylori, the causative agent of gastric ulcers. The structures of VirB8 and ComB10 resemble known folds, albeit with novel secondary-structure modifications unique to and conserved within their respective families. Both proteins crystallized as dimers, providing detailed predictions about their self associations. These structures make a substantial contribution to the repertoire of T4SS component structures and will serve as springboards for future functional and protein–protein interaction studies by using knowledge-based site-directed and deletion mutagenesis
    corecore