6,230 research outputs found

    Structure of a seeded palladium nanoparticle and its dynamics during the hydride phase transformation

    Get PDF
    Palladium absorbs large volumetric quantities of hydrogen at room temperature and ambient pressure, making the palladium hydride system a promising candidate for hydrogen storage. Here, we use Bragg coherent diffraction imaging to map the strain associated with defects in three dimensions before and during the hydride phase transformation of an individual octahedral palladium nanoparticle, synthesized using a seed-mediated approach. The displacement distribution imaging unveils the location of the seed nanoparticle in the final nanocrystal. By comparing our experimental results with a finite-element model, we verify that the seed nanoparticle causes a characteristic displacement distribution of the larger nanocrystal. During the hydrogen exposure, the hydride phase is predominantly formed on one tip of the octahedra, where there is a high number of lower coordinated Pd atoms. Our experimental and theoretical results provide an unambiguous method for future structure optimization of seed-mediated nanoparticle growth and in the design of palladium-based hydrogen storage systems

    Battery management system and control strategy for hybrid and electric vehicle

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: K. DingAuthor name used in this publication: W. TingVersion of RecordPublishe

    Location prediction based on a sector snapshot for location-based services

    Get PDF
    In location-based services (LBSs), the service is provided based on the users' locations through location determination and mobility realization. Most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shaped cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the new Markov-based mobility prediction (NMMP) and prediction location model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression, and insufficient accuracy. In this paper, a novel cell splitting algorithm is proposed. Also, a new prediction technique is introduced. The cell splitting is universal so it can be applied to all types of cells. Meanwhile, this algorithm is implemented to the Micro cell in parallel with the new prediction technique. The prediction technique, compared with two classic prediction techniques and the experimental results, show the effectiveness and robustness of the new splitting algorithm and prediction technique

    Preferential regulation of stably expressed genes in the human genome suggests a widespread expression buffering role of microRNAs

    Get PDF
    In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes (FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within the 3'-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the number of transcription factor binding sites in the promoter region, which suggests that coordination between transcription factors and miRNAs leads to balanced responses to external perturbations

    Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    Get PDF
    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure

    Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival

    Get PDF
    Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): &lt;i&gt;N&lt;/i&gt;-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that &lt;i&gt;LplA1&lt;/i&gt; plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite &lt;i&gt;P.falciparum&lt;/i&gt; consistently were unsuccessful while in the rodent malaria model parasite &lt;i&gt;P. berghei&lt;/i&gt; the &lt;i&gt;LplA1&lt;/i&gt; gene locus was targeted by knock-in and knockout constructs. However, the &lt;i&gt;LplA1&lt;/i&gt; &lt;sup&gt;(-)&lt;/sup&gt; mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite

    An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5

    Get PDF
    Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained the only one known at z>7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old---just five percent of its current age---reinforces models of early black-hole growth that allow black holes with initial masses of more than about 1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman alpha emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342+0928 is neutral. We derive a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio

    Coherent multi-flavour spin dynamics in a fermionic quantum gas

    Full text link
    Microscopic spin interaction processes are fundamental for global static and dynamical magnetic properties of many-body systems. Quantum gases as pure and well isolated systems offer intriguing possibilities to study basic magnetic processes including non-equilibrium dynamics. Here, we report on the realization of a well-controlled fermionic spinor gas in an optical lattice with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived intrinsic spin oscillations and investigate the transition from two-body to many-body dynamics. The latter results in a spin-interaction driven melting of a band insulator. Via an external magnetic field we control the system's dimensionality and tune the spin oscillations in and out of resonance. Our results open new routes to study quantum magnetism of fermionic particles beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure

    Phase-slip induced dissipation in an atomic Bose-Hubbard system

    Full text link
    Phase slips play a primary role in dissipation across a wide spectrum of bosonic systems, from determining the critical velocity of superfluid helium to generating resistance in thin superconducting wires. This subject has also inspired much technological interest, largely motivated by applications involving nanoscale superconducting circuit elements, e.g., standards based on quantum phase-slip junctions. While phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors. In solids, problems such as uncontrolled noise sources and disorder complicate the study and application of phase slips. Here we show that phase slips can lead to dissipation for a clean and well-characterized Bose-Hubbard (BH) system by experimentally studying transport using ultra-cold atoms trapped in an optical lattice. In contrast to previous work, we explore a low velocity regime described by the 3D BH model which is not affected by instabilities, and we measure the effect of temperature on the dissipation strength. We show that the damping rate of atomic motion-the analogue of electrical resistance in a solid-in the confining parabolic potential fits well to a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, while at higher temperatures a cross-over consistent with the transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008

    Warning signs for stabilizing global CO2 emissions

    Get PDF
    Carbon dioxide (CO2) emissions from fossil fuels and industry comprise ~90% of all CO2 emissions from human activities. For the last three years, such emissions were stable, despite continuing growth in the global economy. Many positive trends contributed to this unique hiatus, including reduced coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For 2017, we project emissions growth of 2.0% (range: 0.8%−3.0%) from 2016 levels (leap-year adjusted), reaching a record 36.8 ± 2 Gt CO2. Economic projections suggest further emissions growth in 2018 is likely. Time is running out on our ability to keep global average temperature increases below 2 °C and, even more immediately, anything close to 1.5 °C
    corecore