75 research outputs found

    Impacts of detrital enrichment on estuarine assemblages: disentangling effects of frequency and intensity of disturbance

    Full text link
    Under climate change, enhanced storminess may increase the magnitude and rate of detrital loading to the benthos, potentially altering sediment chemistry and/or physical disturbance of sediments. To assess whether the impact of detrital loading on invertebrates in intertidal sediment sparsely vegetated by seagrass is negatively affected by increasing the frequency and/or intensity of the disturbance, high (90 g dry weight) or low (30 g dry weight) quantities of shredded Zostera capricorm were added to experimental plots at high (intervals of 8 wk, on a total of 3 occasions) or low (added once) frequency. Macroinvertebrate assemblages were sampled 8, 16 and 24 wk after the first detrital enrichment. Plots subjected to frequent detrital addition contained up to 50% fewer macroinvertebrates, representing 50% fewer taxa than plots disturbed only once. This pattern was independent of disturbance intensity and emerged after only 2 detrital additions. Only at the low frequency of addition did the increased quantity of detritus influence macroinvertebrate assemblage composition, halving the number of animals by Week 24. Physical disturbance, not sediment chemistry, drove the frequency effect. Generally negative impacts of frequent detrital enrichment on infaunal populations occurred despite small positive effects of high detrital enrichment on the biomass of microphytobenthos, the food source of many sediment-dwelling invertebrates. These results suggest that, even though climate warming may increase the amount of detritus that is washed up onto intertidal sediments, its greater effect on soft-sediment communities is likely to come through increasing the frequency of storms

    Changes in benthos following the clean-up of a severely metal-polluted cove in the Hudson River estuary: Environmental restoration or ecological disturbance?

    Full text link
    We studied changes in macrobenthic communities following the environmental clean-up of metal-polluted (cadmium, nickel, and cobalt) sediments in Foundry Cove, a small inlet within the Hudson River estuary of New York. We used a BACI-style experiment to test the hypotheses that high levels of cadmium in sediments change macrobenthic assemblages relative to unpolluted areas, and removal of metals (especially cadmium) by dredging will restore the benthos, such that benthic fauna in Foundry Cove are not different from unpolluted areas. In 1984, prior to the restoration work, there were no significant differneces between macrobenthic assemblages in polluted and unpolluted locations, indicating that cadmium had little effect on community structure. The lack of an observed toxicity effect may have been caused by the compensatory evolution of resistance to cadmium in dominant organisms. Six years after the restoration work and despite a substantial reduction in metal pollution, there were lower abundances of oligochaetes, nematodes, and chironomids and a higher abundance of polychaetes at Foundry Cove relative to reference locations. Correlative analyses identified greater sediment compaction caused by dredging at Foundry, Cove as a possible cause of faunal differences

    Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands Ecology and Management 17 (2009): 469-487, doi: 10.1007/s11273-008-9125-3.The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. S. patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.This research was supported by the Plum Island Ecosystem Long Term Ecological Research program (OCE-972692 and OCE 0423565) of the National Science Foundation (NSF). J. Horowitz and J. Ludlam were supported by NSF Research Experience for Undergraduate (REU) grants when they were students at Hampshire College and Gordon College respectively

    Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing

    Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    Get PDF
    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects

    Effects of frond length on diverse gastropod assemblages in coralline turf

    Full text link
    Habitat mimics were used to investigate the role of coralline algal frond length in determining spatial patterns in diverse gastropod assemblages on a rocky shore near Sydney, Australia. Frond length represents the vertical scale component of habitat structure, which is rarely experimentally manipulated. Length of fronds did not explain differences between gastropod assemblages at different tidal heights or among patches of turf separated by tens of metres in mid-shore areas. In contrast, changes in frond length caused large differences in the structure of gastropod assemblages in low-shore areas. Contrary to previous studies, the total abundance and diversity of gastropods was greater in turf with short fronds than with long fronds. Possible mechanisms for this negative relationship are discussed. Overall, the vertical scale component of habitat structure can have strong effects on associated faunal assemblages, but the magnitude of these effects depend heavily on local environmental conditions (e.g. different tidal heights)

    Does colonization contribute to spatial patterns of common invertebrates in coralline algal turf?

    Full text link
    The potential of colonization to contribute to the spatial patterns of six common invertebrates in coralline algal turf was investigated on a rocky shore near Sydney, Australia. The species, which included two amphipods (Elasmopus warra, Hyale spp.), a
    • …
    corecore