80 research outputs found

    Evolution from XIST-Independent to XIST-Controlled X-Chromosome Inactivation: Epigenetic Modifications in Distantly Related Mammals

    Get PDF
    X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI

    The Distribution of Sexually-Transmitted Human Papillomaviruses in HIV Positive and Negative Patients in Zambia, Africa

    Get PDF
    Background: Human Papillomaviruses (HPV) are double-stranded DNA viruses, considered to be the primary etiological agents in cervical intraepithelial neoplasias and cancers. Approximately 15–20 of the 40 mucosal HPVs confer a high-risk of progression of lesions to invasive cancer. In this study, we investigated the prevalence of sexually transmitted HPVs in Human Immunodeficiency Virus (HIV) positive and negative patients in Zambia, Africa. The rate of high-risk HPV genotypes worldwide varies within each country. Thus, we sought to investigate the rates of HPV infection in sub-Saharan Africa and the potential role of HIV in affecting the HPV genotype distribution. Methods: This retrospective cross-sectional study reports findings on the association and effects of HIV on HPV infections in an existing cohort of patients at University Teaching Hospital (UTH) Lusaka, Zambia. The objective of this study was to assess HPV prevalence, genotype distribution and to identify co-factors that influence HPV infection. Polymerase chain reaction (PCR) with two standard consensus primer sets (CpI/II and GP5+/6+) was used to test for the presence of HPV DNA. Primers specific for β-actin were used to monitor DNA quality. Vaginal lavage samples, collected between 1998-1999 from a total of 70 women, were part of a larger cohort that was also analyzed for HIV and human herpesvirus infection. Seventy of the samples yielded usable DNA. HIV status was determined by two rapid assays, Capillus and Determine. The incidence of HIV and HPV infections and HPV genotype distributions were calculated and statistical significance was determined by Chi-Squared test. Results: We determined that most common HPV genotypes detected among these Zambian patients were types 16 and 18 (21.6% each), which is approximately three-fold greater than the rates for HPV16, and ten-fold greater than the rates for HPV18 in the United States. The worldwide prevalence of HPV16 is approximately 14% and HPV18 is 5%. The overall ratio of high-risk (HR) to low-risk (LR) HPVs in the patient cohort was 69% and 31% respectively; essentially identical to that for the HR and LR distributions worldwide. However, we discovered that HIV positive patients were two-times as likely to have an HR HPV as HIV negative individuals, while the distribution of LR HPVs was unaffected by HIV status. Interestingly, we observed a nine-fold increase in HPV18 infection frequency in HIV positive versus HIV negative individuals. Conclusion: The rate of oncogenic HPVs (type 16 and 18) in Zambia was much higher than in the U.S., potentially providing an explanation for the high-rates of cervical cancer in Zambia. Surprisingly, we discovered a strong association between positive HIV status and the prevalence of HR HPVs, and specifically HPV18

    Misbehaviour of XIST RNA in Breast Cancer Cells

    Get PDF
    A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors

    Evolutionary diversity and developmental regulation of X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

    Get PDF
    MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation.SOLiD ultra-deep sequencing identified >10(7) unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs.Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation

    Xist regulation and function eXplored

    Get PDF
    X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI

    Sterility and Gene Expression in Hybrid Males of Xenopus laevis and X. muelleri

    Get PDF
    BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level
    corecore