151 research outputs found

    Laboratory test for EPB tunnelling assessment:results of test campaign on two different granular soils

    Get PDF
    Earth Pressure Balanced shields are currently the most utilized tunnelling machines throughout around the world. The possibility of using conditioning agents that change the mechanical and hydraulic behaviour of a soil, changing it into a plastic paste and thus permitting soil pressure applications at the tunnel face, is the key point to explain the increasing utilization of this technology. Despite its great importance, not much laboratory researches can be registered on soil conditioning, particularly for cohesionless soils. The conditioning criterion is usually defined on the basis of a trial-and-error procedure developed directly at the job sites. A test that is able to simulate the extraction of soil from the bulk chamber with the screw conveyor inclined upwards, as in real machines, can offer a quantitative indication of the conditioned soil behavior for EPB use. The characteristics of the device and the results obtained on many different types of soil are discussed in order to point out the great importance and quality of results that can be achieved using the proposed test devic

    The behaviour of a two-component backfilling grout used in a Tunnel-Boring Machine

    Get PDF
    The instantaneous filling of the annulus that is created behind the segment lining at the end of the tail during the TBM advance is an operation of paramount importance. Its main goal is to minimize the surface settlements due to any over-excavation generated by the passage of the TBM. To correctly achieve the goals, a simultaneous backfilling system and the injected material should satisfy the technical, operational and performance characteristics. A two-component system injection for the back-filling is progressively substituting the use of traditional mortars. In this paper different systems of back-filling grout and in particular the two-component system are analyzed and the results of laboratory tests are presented and discusse

    QuaRRi: a new methodology for rock-fall risk analysis and management in quarry exploitation

    Get PDF
    Rockfall is one of the most critical geological events that can affect quarrying activities. Nevertheless, few tools are currently available to help designers and managers correctly define the risk conditions and quantify the advantages, in terms of workers' safety and quarry management, that can be obtained using suitable prevention devices. For this reason it is necessary to evaluate the various parameters that are involved, and to define the most important and which have the greatest influence on rock-fall phenomena, taking into account the Prevention through Design approach. A risk evaluation systemwhich is able to support decision makers in the critical rockfall risk assessment phase, and offer decision makers the updated information that is necessary for a continuous and dynamic operation design during exploitation activities is here presented and discusse

    Galileo: the added value for integrity in harsh environments

    Get PDF
    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.JRC.G.5-Security technology assessmen

    Semi-Analytic Techniques for Fast MATLAB Simulations

    Get PDF
    Semi-analytic techniques are a powerful tool for the analysis of complex systems. In the semi-analytic framework, the knowledge of the system under analysis is exploited to reduce the computational load and complexity that full Monte Carlo simulations would require. In this way, the strengths of both analytical and Monte Carlo methods are effectively combined. The main goal of this chapter is to provide a general overview of semi-analytic techniques for the simulation of communications systems. Specific emphasis is given to their implementation in Matlab and two examples from the communications and navigation context are analyzed in detail. More specifically, the impact of RF interference on acquisition and tracking, the two main stages of a Global Navigation Satellite System (GNSS) receiver, are considered. Although semi-analytic techniques have been considered in textbooks on simulations, limited attention has been provided to their analysis and implementation. This chapter mainly focuses on these two aspects with specific emphasis on the potential of the Matlab environment for their implementation.JRC.G.6-Security technology assessmen

    Interference mitigation: impact on GNSS timing

    Get PDF
    AbstractWhile interference mitigation techniques can significantly improve the performance of a Global Navigation Satellite System (GNSS) receiver in the presence of jamming, they can also introduce distortions, biases and delays on the GNSS measurements and on the final receiver solution. We analyze the impact of five interference mitigation techniques on the solution provided by a GNSS timing receiver that operates in a known location and under static conditions. In this configuration, the receiver only estimates its clock bias and drift, which can be potentially affected by interference mitigation. The analysis has been performed considering a multiconstellation case, including GPS L1 Coarse Acquisition (C/A), Galileo E1b/c and Beidou B1c signals. Tests were also conducted on the wideband Galileo E5b modulation. In all cases, real jammers were used to challenge GNSS signal reception. The techniques analyzed are four Robust Interference Mitigation (RIM) approaches and the Adaptive Notch Filter (ANF). From the analysis, it emerges that RIM techniques do not affect the receiver clock bias and drift. On the other hand, the ANF introduces a modulation-dependent delay on the clock bias. This delay is difficult to predict and is common to signals adopting modulations with similar spectral characteristics. In this respect, interoperable signals such as the Galileo E1b/c and Beidou B1c components are affected in the same way by the ANF, which leaves the Galileo–Beidou intersystem bias unaltered. Stability analysis has also been performed: interference mitigation does not significantly increase the short-term characteristics of the estimated clock bias and drift for low jamming levels

    Stand-alone and Hybrid Positioning using Asynchronous Pseudolites

    Get PDF
    Global navigation satellite system (GNSS) receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite systems, where different pseudolites operate in an independent way. Asynchronous pseudolite systems require, however, dedicated strategies in order to properly integrate GNSS and pseudolite measurements. In this paper, several asynchronous pseudolite/GNSS integration strategies are considered: loosely- and tightly-coupled approaches are developed and combined with pseudolite proximity and receiver signal strength (RSS)-based positioning. The performance of the approaches proposed has been tested in different scenarios, including static and kinematic conditions. The tests performed demonstrate that the methods developed are effective techniques for integrating heterogeneous measurements from different sources, such as asynchronous pseudolites and GNSS.JRC.G.5-Security technology assessmen

    How tunnel boundary irregularities can influence the stresses in a shotcrete lining

    Get PDF
    The shape of a tunnel boundary excavated by drill & blast in fractured rock masses is influenced by geological conditions and blasting operations. The overbreaks, apart from influencing the construction times and costs, also have an important influence on the stresses acting in the shotcrete lining, particularly when it is used as the final lining. These effects have been analyzed, on the basis of a parametric numerical analysis, and the results have shown that if the boundary shape is more irregular there are traction stresses. These tractions are not evident if a regular shape of the boundary is considered in the numerical mode

    Impact of Pseudolite Signals on Non-Participating GPS Receivers

    Get PDF
    Pseudolites or pseudo-satellites are an emerging technology that has the potential to extend the capability of Global Navigation Satellite Systems (GNSS) indoors and in harsh environments where GNSS services are denied. Although their potential, pseudolites could cause severe interference problems to non-participating receivers, i.e., GNSS receivers unable or not designed to use pseudolite signals. In this report, preliminary results obtained by the IPSC-JRC on the impact of pseudolite signals on commercial non-participating receivers are presented. The analysis considered two pseudolite modulations. In the fist case, the pseudolite signal has same structure adopted by GPS L1 C/A signals whereas in the second scenario a pulsing scheme has been adopted to reduce the interference problem. From the analysis, it emerges that in the case of a continuous pseudolite modulation, the performance of the non-participating receiver is already significantly degraded when the pseudolite signal is about 10 times stronger than the average signal power. More specifically, a 3 dB loss is introduced in the estimated C/N0 of the useful GPS signals. The use of a pulsing scheme significantly mitigates the impact of pseudolite signals and the receiver is able to maintain lock and provide a position solution for all the tested pseudolite power levels. Further investigations are required to determine if higher pseudolite signal powers could affect more severely a non-participating receiver.JRC.DG.G.6-Security technology assessmen

    Loop Filters with Controllable Doppler Jitter for Standard and High Sensitivity GNSS Receivers

    Get PDF
    Standard tracking loops are usually designed by selecting the loop bandwidth that controls the variance of the phase observable. In this paper, a new approach for the loop filter design is introduced. The proposed methodology is based on the concept of Doppler bandwidth and provides control over the variance of Doppler frequency measurements. Doppler measurements reflect the relative motion between receiver and satellites and can be used to simplify the selection of the loop parameters that can be directly determined as a function of the user dynamics. Two different GNSS carrier tracking loop architectures are considered, namely standard and memory discriminator based tracking loops, and a design example is provided to show the effectiveness of the proposed approach.JRC.G.6-Security technology assessmen
    • …
    corecore