117 research outputs found

    ORIGEM E RAMIFICAÇÕES DAS ARTÉRIAS MESENTÉRICAS CRANIAL E CAUDAL EM TARTARUGA DA AMAZÔNIA Podocnemis expansa Schweigger, 1812, (Testudinata-pelomedusidae)

    Get PDF
    Foram estudadas cinco Podocnemis expansa, fêmeas, cujo peso variava de 550 a 850 g. Os animais tiveram seu sistema arterial injetado com solução corada de látex sintético, fixados e armazenados em solução aquosa de formaldeído a 10%. Após abertura da cavidade celomática, as artérias mesentéricas cranial e caudal foram dissecadas. Encontrou-se a artéria mesentérica cranial como um ramo do tronco celíaco-mesentérico e originando as artérias pancreaticoduodenal caudal, ileocólica e jejunais, que irrigam o duodeno, pâncreas, cólon, íleo e jejuno, respectivamente. A artéria mesentérica caudal origina-se da aorta (60%) ou da artéria ilíaca comum (40%), distribuindo-se para o cólon e reto. Origin and ramifications of the cranial and caudal mesenteric arteries in Amazonian turtle - Podocnemis expansa Schweigger, 1812, Testudinata-Pelomedusidae Abstract An anatomic study has been carried out on the mesenteric arteries of five Podocnemis expansa females weighing from 550 to 680 g. The animals had their artery system injected with a latex solution colored with a specific pigment and were then fixed in a 10% formol solution. After the coelomatic cavity being opened the cranial and caudal mesenteric arteries were dissected. It has been found that the cranial mesenteric artery is a branch of the coeliac mesenteric trunk while the cranial mesenteric artery gives off the pancreatic-duodenal , ileocolic and jejunal arteries that irrigate the duodenum, pancreas, colon, ileum and jejunum respectively. The aorta gives origen of as much as 60% of the caudal mesenteric artery, the remaining 40 % being originated from the common ileac artery, their branches reaching the colon and the rectum

    Greenhouse gas emissions from inland waters: A perspective and research agenda for the tropics and subtropics

    Full text link
    peer reviewedStrong consensus indicates that inland waters emit globally significant quantities of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Tropical inland waters are often considered major contributors to higher greenhouse gas fluxes, yet accurate estimates of aquatic greenhouse gas fluxes are limited for the tropics. We provide a historical perspective on research carried out across low latitudes since the 1980s, synthesize current understanding of the sources and drivers of greenhouse gas emissions, and highlight priority research areas for future tropical inland water greenhouse gas research. We show that much of the focus has been on the humid tropics while the wet-dry, (semi)arid, and mountainous regions remain underrepresented in global datasets. Consistent and reliable greenhouse gas emission estimates will require (1) addressing the observational mismatch with new data from understudied ecoregions, (2) favoring direct and high-resolution carbon dioxide measurements over indirect estimates based on water chemistry parameters, (3) developing approaches that cross boundaries between ecosystem types and scales, and (4) sharing and publishing data more systematically

    Formulation and Optimization by Experimental Design of Low-Fat Mayonnaise Based on Soy Lecithin and Whey

    Get PDF
    The main objective of this study is to develop a new formula for a diet mayonnaise-like sauce without cholesterol. Emulsifying power is provided by the use of soy lecithin and the total fat content was limited to 16%. Droplet size measurement of employed mayonnaise samples at different times show that the largest diameter of fat does not exceed 18.5 µm with a yield stress of 56.1 Pa. Results of stability to centrifugation reveal that the absence of the supernatant oily layer ensures the stability of the emulsion. Using the experimental design method, the number of trials can be limited to a number of 16 experiments, and best formulation of the mayonnaise (without cholesterol) was obtained

    Ecological indicators to capture the effects of fishing on biodiversityand conservation status of marine ecosystems

    Get PDF
    IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data avail-ability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii)mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species,and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our under-standing of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses,and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems

    Ecological indicators to capture the effects of fishing on biodiversityand conservation status of marine ecosystems

    Get PDF
    IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data avail-ability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii)mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species,and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our under-standing of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses,and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems

    Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    Get PDF
    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype
    corecore